首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of peptide YY, a gastrointestinal hormone, on the expression of the apolipoprotein A-IV gene in the intestinal epithelial cell line Caco-2 was examined by semiquantitative RT-PCR followed by Southern hybridization with an inner oligonucleotide probe. Apolipoprotein A-IV mRNA levels were increased in response to peptide YY in a dose- and time-dependent fashion. Western blotting revealed that the exogenous peptide YY increased the intracellular concentration of apolipoprotein A-IV. In contrast, apolipoprotein A-I, B, and C-III mRNA did not respond to peptide YY. Differentiated Caco-2 cells expressed Y1- but not Y2- and Y5-receptor subtype mRNA. The present results suggest that peptide YY modulates apolipoprotein A-IV gene expression, likely via the Y1-receptor subtype in intestinal epithelial cells.  相似文献   

2.
Activation of TRPV1 by the satiety factor oleoylethanolamide   总被引:9,自引:0,他引:9  
The fatty acid oleoylethanolamide (OEA) is a satiety factor that excites peripheral vagal sensory nerves, but the mechanism by which this occurs and the molecular targets of OEA are unclear. In this study the ability of OEA to modulate the capsaicin receptor (TRPV1) was explored. OEA alone did not activate TRPV1 expressed in Xenopus oocytes under control conditions, but produced a differential modulation of agonist-evoked responses. OEA enhanced proton-gated TRPV1 currents, inhibited anandamide-evoked currents and had no effect on capsaicin-evoked responses. Following stimulation of protein kinase C (PKC), OEA alone directly activated TRPV1 channel with an EC50 of approximately 2 microm at room temperature. This effect was due to direct phosphorylation of TRPV1 because no responses to OEA were observed with mutant channels lacking critical PKC phosphorylation sites, S502A/S800A. In sensory neurons, OEA-induced Ca2+ rises that were selective for capsaicin-sensitive cells, inhibited by the TRPV1 blocker, capsazepine, and occurred in a PKC-dependent manner. Further, after PKC stimulation, OEA activated TRPV1 channels in cell-free patches suggesting a direct mode of action. Thus, TRPV1 represents a potential target for OEA and may contribute to the excitatory action of OEA on sensory nerves.  相似文献   

3.
Obesity has been described as the greatest current threat to human health. In order to design drugs to target obesity, it is essential to understand its physiology and pathophysiology. Several peptides synthesised in the gastrointestinal tract which affect food intake have been identified including ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (7-36) amide (GLP-1), oxyntomodulin, peptide YY (PYY) and pancreatic polypeptide (PP). These peptides represent potential targets for the design of anti-obesity drugs. In this article we review recent advances in our understanding of food intake by these gastrointestinal hormones.  相似文献   

4.
5.
Apolipoprotein A-IV (apo A-IV), a peptide expressed by enterocytes in the mammalian small intestine and released in response to long-chain triglyceride absorption, may be involved in the regulation of gastric acid secretion and gastric motility. The specific aim of the present study was to determine the pathway involved in mediating inhibition of gastric motility produced by apo A-IV. Gastric motility was measured manometrically in response to injections of either recombinant purified apo A-IV (200 microg) or apo A-I, the structurally similar intestinal apolipoprotein not regulated by triglyceride absorption, close to the upper gastrointestinal tract in urethane-anesthetized rats. Injection of apo A-IV significantly inhibited gastric motility compared with apo A-I or vehicle injections. The response to exogenous apo A-IV injections was significantly reduced by 77 and 55%, respectively, in rats treated with the CCK(1) receptor blocker devazepide or after functional vagal deafferentation by perineural capsaicin treatment. In electrophysiological experiments, isolated proximal duodenal vagal afferent fibers were recorded in vitro in response to close-arterial injection of vehicle, apo A-IV (200 microg), or CCK (10 pmol). Apo A-IV stimulated the discharge of duodenal vagal afferent fibers, significantly increasing the discharge in 4/7 CCK-responsive units, and the response was abolished by CCK(1) receptor blockade with devazepide. These data suggest that apo A-IV released from the intestinal mucosa during lipid absorption stimulates the release of endogenous CCK that activates CCK(1) receptors on vagal afferent nerve terminals initiating feedback inhibition of gastric motility.  相似文献   

6.
N-oleoyldopamine (OLDA) has been identified as an agonist of the transient receptor potential vanilloid type 1 (TRPV1) receptor. A related fatty acid amide, N-oleoylethanolamide (OEA), was found to excite sensory neurons and produce visceral hyperalgesia via activation of the TRPV1 receptor, however, a recent study described this agent as an antinociceptive one. The aim of the present paper was to characterize two newly synthesized derivatives of N-oleoyldopamine, 3-methyl-N-oleoyldopamine (3-MOLDA) and 4-methyl-N-oleoyldopamine (4-MOLDA) as well as OEA with regard to their effects on the TRPV1 receptor. Radioactive 45Ca2+ uptake was measured in HT5-1 cells transfected with the rat TRPV1 receptor and intracellular Ca2+ concentration was monitored by fura-2 microfluorimetry in cultured trigeminal sensory neurons. Thermonociception was assessed by determining the behavioral noxious heat threshold in rats. 3-MOLDA induced 45Ca2+ uptake in a concentration-dependent manner, whereas 4-MOLDA and OEA were without effect. 4-MOLDA and OEA, however, concentration-dependently reduced the 45Ca2+ uptake-inducing effect of capsaicin. In trigeminal sensory neurons, 3-MOLDA caused an increase in intracellular Ca2+ concentration and this effect exhibited tachyphylaxis upon repeated application. Again, 4-MOLDA and OEA failed to alter intracellular Ca2+ levels. Upon intraplantar injection, 3-MOLDA caused an 8-10 degrees C drop of the noxious heat threshold in rats which was inhibited by the TRPV1 receptor antagonist iodo-resiniferatoxin. 4-MOLDA and OEA failed to alter the heat threshold but inhibited the threshold drop induced by the TRPV1 receptor agonist resiniferatoxin. These data show that 3-MOLDA behaves as an agonist, whereas 4-MOLDA and OEA appear to be antagonists, at the rat TRPV1 receptor.  相似文献   

7.
Bariatric surgery for obesity has proved to be an extremely effective method of promoting long-term weight reduction with additional beneficial metabolic effects, such as improved glucose tolerance and remission of type 2 diabetes. A range of bariatric procedures are in common use, including gastric banding, sleeve gastrectomy and the Roux-en-Y gastric bypass. Although the mechanisms underlying the efficacy of bariatric surgery are unclear, gastrointestinal and pancreatic peptides are thought to play an important role. The aim of this review is to summarise the effects of different bariatric surgery procedures upon gastrointestinal and pancreatic peptides, including ghrelin, gastrin, cholecystokinin (CCK), glucose-dependent insulinotropic hormone (GIP), glucagon-like peptide 1 (GLP-1), peptide YY (PYY), oxyntomodulin, insulin, glucagon and somatostatin.  相似文献   

8.
This review discusses the regulation of the intestinal and hypothalamic apolipoprotein A-IV (apo A-IV) gene and protein expression. Apo A-IV is a glycoprotein secreted together with triglyceride-rich lipoproteins by the small intestine. Intestinal apo A-IV synthesis is stimulated by fat absorption, probably mediated by chylomicron formation. This stimulation of intestinal apo A-IV synthesis is attenuated by intravenous leptin infusion. Chronic ingestion of a high-fat diet blunts the intestinal apo A-IV in response to dietary lipid. Intestinal apo A-IV synthesis is also stimulated by members of the pancreatic polypeptide family, including peptide YY (PYY), neuropeptide Y (NPY), and pancreatic polypeptide (PP). Recently, apo A-IV was demonstrated to be present in the hypothalamus as well. Hypothalamic apo A-IV level was reduced by food deprivation and restored by lipid feeding. Intracerebroventricular administration of apo A-IV antiserum stimulated feeding and decreased the hypothalamic apo A-IV mRNA level, implying that feeding is intimately regulated by endogenous hypothalamic apo A-IV. Central administration of NPY significantly increased hypothalamic apo A-IV mRNA levels in a dose-dependent manner.  相似文献   

9.
Amides of fatty acids with ethanolamine (FAE) are biologically active lipids that participate in a variety of biological functions, including the regulation of feeding. The polyunsaturated FAE anandamide (arachidonoylethanolamide) increases food intake by activating G protein-coupled cannabinoid receptors. On the other hand, the monounsaturated FAE oleoylethanolamide (OEA) reduces feeding and body weight gain by activating the nuclear receptor PPAR-alpha (peroxisome proliferator-activated receptor alpha). In the present report, we examined whether OEA can also influence energy utilization. OEA (1-20 microm) stimulated glycerol and fatty acid release from freshly dissociated rat adipocytes in a concentration-dependent and structurally selective manner. Under the same conditions, OEA had no effect on glucose uptake or oxidation. OEA enhanced fatty acid oxidation in skeletal muscle strips, dissociated hepatocytes, and primary cardiomyocyte cultures. Administration of OEA in vivo (5 mg kg(-1), intraperitoneally) produced lipolysis in both rats and wild-type mice, but not in mice in which PPAR-alpha had been deleted by homologous recombination (PPAR-alpha(-/-)). Likewise, OEA was unable to enhance lipolysis in adipocytes or stimulate fatty acid oxidation in skeletal muscle strips isolated from PPAR-alpha mice. The synthetic PPAR-alpha agonist Wy-14643 produced similar effects, which also were dependent on the presence of PPAR-alpha. Subchronic treatment with OEA reduced body weight gain and triacylglycerol content in liver and adipose tissue of diet-induced obese rats and wild-type mice, but not in obese PPAR-alpha(-/-) mice. The results suggest that OEA stimulates fat utilization through activation of PPAR-alpha and that this effect may contribute to its anti-obesity actions.  相似文献   

10.
Oleoylethanolamide (OEA) is a lipid mediator that inhibits food intake by activating the nuclear receptor peroxisome proliferator-activated receptor-alpha. In the rodent small intestine OEA levels decrease during food deprivation and increase upon refeeding, suggesting that endogenous OEA may participate in the regulation of satiety. Here we show that feeding stimulates OEA mobilization in the mucosal layer of rat duodenum and jejunum but not in the serosal layer from the same intestinal segments in other sections of the gastrointestinal tract (stomach, ileum, colon) or in a broad series of internal organs and tissues (e.g. liver, brain, heart, plasma). Feeding also increases the levels of other unsaturated fatty acid ethanolamides (FAEs) (e.g. linoleoylethanolamide) without affecting those of saturated FAEs (e.g. palmitoylethanolamide). Feeding-induced OEA mobilization is accompanied by enhanced accumulation of OEA-generating N-acylphosphatidylethanolamines (NAPEs) increased activity and expression of the OEA-synthesizing enzyme NAPE-phospholipase D, and decreased activity and expression of the OEAdegrading enzyme fatty acid amide hydrolase. Immunostaining studies revealed that NAPE-phospholipase D and fatty acid amide hydrolase are expressed in intestinal enterocytes and lamina propria cells. Collectively, these results indicate that nutrient availability controls OEA mobilization in the mucosa of the proximal intestine through a concerted regulation of OEA biosynthesis and degradation.  相似文献   

11.
Dietary fat-derived lipid oleoylethanolamide (OEA) has shown to modulate lipid metabolism through a peroxisome proliferator-activated receptor-alpha (PPAR-α)-mediated mechanism. In our study, we further demonstrated that OEA, as an atheroprotective agent, modulated the atherosclerotic plaques development. In vitro studies showed that OEA antagonized oxidized LDL (ox-LDL)-induced vascular endothelial cell proliferation and vascular smooth muscle cell migration, and suppressed lipopolysaccharide (LPS)-induced LDL modification and inflammation. In vivo studies, atherosclerosis animals were established using balloon-aortic denudation (BAD) rats and ApoE-/- mice fed with high-caloric diet (HCD) for 17 or 14 weeks respectively, and atherosclerotic plaques were evaluated by oil red staining. The administration of OEA (5 mg/kg/day, intraperitoneal injection, i.p.) prevented or attenuated the formation of atherosclerotic plaques in HCD-BAD rats or HCD-ApoE−/− mice. Gene expression analysis of vessel tissues from these animals showed that OEA induced the mRNA expressions of PPAR-α and downregulated the expression of M-CFS, an atherosclerotic marker, and genes involved in oxidation and inflammation, including iNOS, COX-2, TNF-α and IL-6. Collectively, our results suggested that OEA exerted a pharmacological effect on modulating atherosclerotic plaque formation through the inhibition of LDL modification in vascular system and therefore be a potential candidate for anti-atherosclerosis drug.  相似文献   

12.
Oleoylethanolamide (OEA) is an endogenous lipid mediator involved in the control of feeding, body weight, and energy metabolism. However, whether OEA modulates maturation of dendritic cells (DCs) has never been addressed. Hence, we evaluated the effect of OEA on DCs maturation in bone marrow-derived DCs (BMDCs) in four aspects: (a) Cell surface markers were determined using flow cytometric analysis; (b) cell mobile ability was testified with the transwell assay; (c) stimulation of T cells proliferation was performed in a coculture system; and (d) cytokine production was measured using polymerase chain reaction (PCR). The result showed that, in mature BMDCs induced by lipopolysaccharides (LPS), the OEA treatment decreased expressions of cell surface markers, reduced cell migration, diminished the proliferation of cocultured T cells, and regulated cytokine production of BMDCs, indicating the modulatory effect of OEA on DCs maturation. Furthermore, to explore the underlying mechanism of the immunomodulatory effect of OEA, we used antagonists of transient receptor potential vanilloid-1 (TRPV1) and AMP-activated protein kinase (AMPK), determined the protein expressions of TRPV1/AMPK and Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) using western blot, and measured the intracellular calcium concentration using calcium imaging. The result illustrated that OEA downregulated TLR4/NF-κB, the classical pathway leading to DCs maturation induced by LPS, through the activation of TRPV1 and AMPK. Collectively, the present study suggests that OEA suppresses DCs maturation through the activation of TRPV1/AMPK. These findings increase our understanding of this endogenous lipid OEA.  相似文献   

13.
Cholecystokinin (CCK), peptide YY (PYY), and ghrelin have been proposed to act as satiety hormones. CCK and PYY are stimulated during meal intake by the presence of nutrients in the small intestine, especially fat, whereas ghrelin is inhibited by eating. The sequence of events (fat intake followed by fat hydrolysis and CCK release) suggests that this process is crucial for triggering the effects. The aim of this study was therefore to investigate whether CCK mediated the effect of intraduodenal (ID) fat on ghrelin secretion and PYY release via CCK-1 receptors. Thirty-six male volunteers were studied in three consecutive, randomized, double-blind, cross-over studies: 1) 12 subjects received an ID fat infusion with or without 120 mg orlistat, an irreversible inhibitor of gastrointestinal lipases, compared with vehicle; 2) 12 subjects received ID long-chain fatty acids (LCF), ID medium-chain fatty acids (MCF), or ID vehicle; and 3) 12 subjects received ID LCF with and without the CCK-1 receptor antagonist dexloxiglumide (Dexlox) or ID vehicle plus intravenous saline (placebo). ID infusions were given for 180 min. The effects of these treatments on ghrelin concentrations and PYY release were quantified. Plasma hormone concentrations were measured in regular intervals by specific RIA systems. We found the following results. 1) ID fat induced a significant inhibition in ghrelin levels (P < 0.01) and a significant increase in PYY concentrations (P < 0.004). Inhibition of fat hydrolysis by orlistat abolished both effects. 2) LCF significantly inhibited ghrelin levels (P < 0.02) and stimulated PYY release (P < 0.008), whereas MCF were ineffective compared with controls. 3) Dexlox administration abolished the effect of LCF on ghrelin and on PYY. ID fat or LCF significantly stimulated plasma CCK (P < 0.006 and P < 0.004) compared with saline. MCF did not stimulate plasma CCK release. In summary, fat hydrolysis is essential to induce effects on ghrelin and PYY through the generation of LCF, whereas MCF are ineffective. Furthermore, LCF stimulated plasma CCK release, suggesting that peripheral CCK is the mediator of these actions. The CCK-1 receptor antagonist Dexlox abolished the effect of ID LCF, on both ghrelin and PYY. Generation of LCF through hydrolysis of fat is a critical step for fat-induced inhibition of ghrelin and stimulation of PYY in humans; the signal is mediated via CCK release and CCK-1 receptors.  相似文献   

14.
The increase in the prevalence of human obesity highlights the need to identify molecular and cellular mechanisms involved in control of feeding and energy balance. Oleoylethanolamide (OEA), an endogenous lipid produced primarily in the small intestine, has been identified to play an important role in the regulation of animal food intake and body weight. Previous studies indicated that OEA activates peroxisome proliferator-activated receptor-alpha, which is required to mediate the effects of appetite suppression, reduces blood lipid levels, and enhances peripheral fatty acid catabolism. However, the effect of OEA on enterocyte function is unclear. In this study, we have examined the effect of OEA on intestinal fatty acid uptake and FAT/CD36 expression in vivo and in vitro. We intraperitoneally administered OEA to rats and examined FAT/CD36 mRNA level and fatty acid uptake in enterocytes isolated from the proximal small intestine, as well as in adipocytes. Our results indicate that OEA treatment significantly increased FAT/CD36 mRNA expression in intestinal mucosa and isolated jejunal enterocytes. In addition, we also found that OEA treatment significantly increases fatty acid uptake in isolated enterocytes in vitro. These results suggest that in addition to appetite regulation, OEA may regulate body weight by altered peripheral lipid metabolism, including increased lipolysis in adipocytes and enhanced fatty acid uptake in enterocytes, both in conjunction with increased expression of FAT/CD36. This study may have important implications in understanding the mechanism of OEA in the regulation of fatty acid absorption in human physiological and pathophysiological conditions.  相似文献   

15.
High-fructose consumption is associated with insulin resistance and diabetic dyslipidemia, but the underlying mechanism is unclear. We show in hamsters that high-fructose feeding stimulated forkhead box O1 (FoxO1) production and promoted its nuclear redistribution in liver, correlating with augmented apolipoprotein C-III (apoC-III) production and impaired triglyceride metabolism. High-fructose feeding upregulated peroxisome proliferator-activated receptor-gamma coactivator-1beta and sterol regulatory element binding protein-1c expression, accounting for increased fat infiltration in liver. High-fructose-fed hamsters developed hypertriglyceridemia, accompanied by hyperinsulinemia and glucose intolerance. These metabolic aberrations were reversible by fenofibrate, a commonly used anti-hypertriglyceridemia agent that is known to bind and activate peroxisome proliferator-activated receptor-alpha (PPARalpha). PPARalpha physically interacted with, but functionally antagonized, FoxO1 in hepatic apoC-III expression. These data underscore the importance of FoxO1 deregulation in the pathogenesis of hypertriglyceridemia in high-fructose-fed hamsters. Counterregulation of hepatic FoxO1 activity by PPARalpha constitutes an important mechanism by which fibrates act to curb apoC-III overproduction and ameliorate hypertriglyceridemia.  相似文献   

16.
H Yu  D Wen  C Ma  Y Meng  S Li  Z Ni  B Cong 《PloS one》2012,7(7):e41860
Cholecystokinin octapeptide (CCK-8), a gut-brain peptide, regulates a variety of physiological behavioral processes. Previously, we reported that exogenous CCK-8 attenuated morphine-induced conditioned place preference, but the possible effects of CCK-8 on aversively motivated drug seeking remained unclear. To investigate the effects of endogenous and exogenous CCK on negative components of morphine withdrawal, we evaluated the effects of CCK receptor antagonists and CCK-8 on the naloxone-precipitated withdrawal-induced conditioned place aversion (CPA). The results showed that CCK2 receptor antagonist (LY-288,513, 10 μg, i.c.v.), but not CCK1 receptor antagonist (L-364,718, 10 μg, i.c.v.), inhibited the acquisition of CPA when given prior to naloxone (0.3 mg/kg) administration in morphine-dependent rats. Similarly, CCK-8 (0.1-1 μg, i.c.v.) significantly attenuated naloxone-precipitated withdrawal-induced CPA, and this inhibitory function was blocked by co-injection with L-364,718. Microinjection of L-364,718, LY-288,513 or CCK-8 to saline pretreated rats produced neither a conditioned preference nor aversion, and the induction of CPA by CCK-8 itself after morphine pretreatments was not significant. Our study identifies a different role of CCK1 and CCK2 receptors in negative affective components of morphine abstinence and an inhibitory effect of exogenous CCK-8 on naloxone-precipitated withdrawal-induced CPA via CCK1 receptor.  相似文献   

17.
G-protein-coupled receptors signaling bitter taste (T2Rs) in the oral gustatory system and the alpha-subunit of the taste-specific G-protein gustducin are expressed in the gastrointestinal (GI) tract. alpha-Subunit of the taste-specific G-protein gustducin colocalizes with markers of enteroendocrine cells in human and mouse GI mucosa, including peptide YY. Activation of T2Rs increases cholecystokinin (CCK) release from the enteroendocrine cell line, STC-1. The aim of this study was to determine whether T2R agonists in the GI tract activate neurons in the nucleus of the solitary tract (NTS) and whether this activation is mediated by CCK and peptide YY acting at CCK(1) and Y(2) receptors. Immunocytochemistry for the protooncogene c-Fos protein, a marker for neuronal activation, was used to determine activation of neurons in the midregion of the NTS, the region where vagal afferents from the GI tract terminate. Intragastric administration of the T2R agonist denatonium benzoate (DB), or phenylthiocarbamide (PTC), or a combination of T2R agonists significantly increased the number of Fos-positive neurons in the mid-NTS; subdiaphragmatic vagotomy abolished the NTS response to the mixture of T2R agonists. Deletion of CCK(1) receptor gene or blockade of CCK(1) receptors with devazepide abolishes the activation of NTS neurons in response to DB, but had no effect on the response to PTC. Administration of the Y(2) receptor antagonist BIIE0246 blocks the activation of NTS neurons to DB, but not PTC. These findings suggest that activation of neurons in the NTS following administration of T2R agonists to the GI tract involves CCK(1) and Y(2) receptors located on vagal afferent terminals in the gut wall. T2Rs may regulate GI function via release of regulatory peptides and activation of the vagal reflex pathway.  相似文献   

18.
There is evidence from studies in animals that the effects of both fat and CCK on gastrointestinal function and energy intake are attenuated by consumption of a high-fat diet. In humans, the effects of exogenous CCK-8 on antropyloroduodenal motility, plasma CCK, peptide YY (PYY), and ghrelin concentrations, appetite, and energy intake are attenuated by a high-fat diet. Ten healthy lean males consumed isocaloric diets (~15,400 kJ per day), containing either 44% (high-fat, HF) or 9% (low-fat, LF) fat, for 21 days in single-blind, randomized, cross-over fashion. Immediately following each diet (i.e., on day 22), subjects received a 45-min intravenous infusion of CCK-8 (2 ng.kg(-1).min(-1)), and effects on antropyloroduodenal motility, plasma CCK, PYY, ghrelin concentrations, hunger, and fullness were determined. Thirty minutes after commencement of the infusion, subjects were offered a buffet-style meal, from which energy intake (in kilojoules) was quantified. Body weight was unaffected by the diets. Fasting CCK (P < 0.05), but not PYY and ghrelin, concentrations were greater following the HF, compared with the LF, diet. Infusion of CCK-8 stimulated pyloric pressures (P < 0.01) and suppressed antral and duodenal pressures (P < 0.05), with no difference between the diets. Energy intake also did not differ between the diets. Short-term consumption of a HF diet increases fasting plasma CCK concentrations but does not affect upper gut motility, PYY and ghrelin, or energy intake during CCK-8 infusion, in a dose of 2 ng.kg(-1).min(-1), in healthy males.  相似文献   

19.
Stimulation of cholecystokinin and glucagon-like peptide-1 secretion by fat is mediated by the products of fat digestion. Ghrelin, peptide YY (PYY), and pancreatic polypeptide (PP) appear to play an important role in appetite regulation, and their release is modulated by food ingestion, including fat. It is unknown whether fat digestion is a prerequisite for their suppression (ghrelin) or release (PYY, PP). Moreover, it is not known whether small intestinal exposure to fat is sufficient to suppress ghrelin secretion. Our study aimed to resolve these issues. Sixteen healthy young males received, on two separate occasions, 120-min intraduodenal infusions of a long-chain triglyceride emulsion (2.8 kcal/min) 1) without (condition FAT) or 2) with (FAT-THL) 120 mg of tetrahydrolipstatin (THL, lipase inhibitor), followed by a standard buffet-style meal. Blood samples for ghrelin, PYY, and PP were taken throughout. FAT infusion was associated with a marked, and progressive, suppression of plasma ghrelin from t = 60 min (P < 0.001) and stimulation of PYY from t = 30 min (P < 0.01). FAT infusion also stimulated plasma PP (P < or = 0.01), and the release was immediate. FAT-THL completely abolished the FAT-induced changes in ghrelin, PYY, and PP. In response to the meal, plasma ghrelin was further suppressed, and PYY and PP stimulated, during both FAT and FAT-THL infusions. In conclusion, in healthy humans, 1) the presence of fat in the small intestine suppresses ghrelin secretion, and 2) fat-induced suppression of ghrelin and stimulation of PYY and PP is dependent on fat digestion.  相似文献   

20.
Panadero M  Herrera E  Bocos C 《Biochimie》2000,82(8):723-726
The expression of the peroxisome proliferator-activated receptor-alpha (PPARalpha) as well as of some related genes was studied in rat liver at different stages of development (from 19-day-old fetuses to 1 month-old rats). The level of PPARalpha mRNA appeared higher in neonates than in fetuses or 1 month-old rats. Whereas the pattern for phosphoenolpyruvate carboxykinase (PEPCK) mRNA level was similar to that of PPARalpha, the mRNA level of both acyl-CoA oxidase (ACO) and apolipoprotein CIII (apo CIII) showed diverse profiles. Western blotting analysis also revealed an increased level of PPARalpha protein in liver of suckling rats. Similarities of mRNA PEPCK and PPARalpha expression indicate a common control mechanism, where both nutritional and hormonal factors may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号