首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The contribution of C-genome diploid species to the evolution of polyploid oats was studied using C-genome ITS-specific primers. SCAR analysis among Avena accessions confirmed the presence of C-genome ITS1-5.8S-ITS2 sequences in the genome of AACC and AACCDD polyploids. In situ hybridization and screening of more than a thousand rRNA clones in Avena polyploid species containing the C-genome revealed substantial C-genome rRNA sequence elimination. C-genome clones sequenced and Maximum Likelihood Parsimony analysis revealed close proximity to Avena ventricosa ITS1-5.8S-ITS2 sequences, providing strong evidence of the latter's active role in the evolution of tetraploid and hexaploid oats. In addition, cloning and sequencing of the chloroplastic trnL intron among the most representative Avena species verified the maternal origin of A-genome for the AACC interspecific hybrid formation, which was the genetic bridge for the establishment of cultivated hexaploid oats.  相似文献   

2.
A physical map of the locations of the 5S rDNA genes and their relative positions with respect to 18S-5.8S-26S rDNA genes and a C genome specific repetitive DNA sequence was produced for the chromosomes of diploid, tetraploid, and hexaploid oat species using in situ hybridization. The A genome diploid species showed two pairs of rDNA loci and two pairs of 5S loci located on both arms of one pair of satellited chromosomes. The C genome diploid species showed two major pairs and one minor pair of rDNA loci. One pair of subtelocentric chromosomes carried rDNA and 5S loci physically separated on the long arm. The tetraploid species (AACC genomes) arising from these diploid ancestors showed two pairs of rDNA loci and three pairs of 5S loci. Two pairs of rDNA loci and 2 pairs of 5S loci were arranged as in the A genome diploid species. The third pair of 5S loci was located on one pair of A-C translocated chromosomes using simultaneous in situ hybridization with 5S rDNA genes and a C genome specific repetitive DNA sequence. The hexaploid species (AACCDD genomes) showed three pairs of rDNA loci and six pairs of 5S loci. One pair of 5S loci was located on each of two pairs of C-A/D translocated chromosomes. Comparative studies of the physical arrangement of rDNA and 5S loci in polyploid oats and the putative A and C genome progenitor species suggests that A genome diploid species could be the donor of both A and D genomes of polyploid oats. Key words : oats, 5S rDNA genes, 18S-5.8S-26S rDNA genes, C genome specific repetitive DNA sequence, in situ hybridization, genome evolution.  相似文献   

3.
E N Jellen  B S Gill  T S Cox 《Génome》1994,37(4):613-618
The genomic in situ hybridization (GISH) technique was used to discriminate between chromosomes of the C genome and those of the A and A/D genomes in allopolyploid oat species (genus Avena). Total biotinylated DNA from A. strigosa (2n = 2x = 14, AsAs genome) was mixed with sheared, unlabelled total DNA from A. eriantha (2n = 2x = 14, CpCp) at a ratio of 1:200 (labelled to unlabelled). The resulting hybridization pattern consisted of 28 mostly labelled and 14 mostly unlabelled chromosomes in the hexaploids. Attempts to discriminate between chromosomes of the A and D genomes in A. sativa (2n = 6x = 42, AACCDD) were unsuccessful using GISH. At least eight intergenomic translocation segments were detected in A. sativa 'Ogle', several of which were not observed in A. byzantina 'Kanota' (2n = 6x = 42, AACCDD) or in A. sterilis CW 439-2 (2n = 6x = 42, AACCDD). At least five intergenomic translocation segments were observed in A. maroccana CI 8330 'Magna' (2n = 4x = 28, AACC). In both 'Ogle' and 'Magna', positions of most of these translocations matched with C-banding patterns.  相似文献   

4.
Four anonymous non-coding sequences were isolated from an Avena strigosa (A genome) genomic library and subsequently characterized. These sequences, designated As14, As121, As93 and As111, were 639, 730, 668, and 619 bp long respectively, and showed different patterns of distribution in diploid and polyploid Avena species. Southern hybridization showed that sequences with homology to sequences As14 and As121 were dispersed throughout the genome of diploid (A genome), tetraploid (AC genomes) and hexaploid (ACD genomes) Avena species but were absent in the C-genome diploid species. In contrast, sequences homologous to sequences As93 and As111 were found in diploid (A and C genomes), tetraploid (AC genomes) and hexaploid (ACD genomes) species. The chromosomal locations of the 4 sequences in hexaploid oat species were determined by fluorescent in situ hybridization and found to be distributed over the length of the 28 chromosomes (except in the telomeric regions) of the A and D genomes. Furthermore, 2 C-genome chromosome pairs with the As14 sequence, and 4 with As121, were discovered to beinvolved in intergenomic translocations. These chromosomes were identified as 1C, 2C, 4C and 16C by combining the As14 or As121 sequences with two ribosomal sequences and a C-genome-specific sequence as probes in fluorescence in situ hybridization. These sequences offer new tools for analyzing possible intergenomic translocations in other hexaploid oat species. Received: 8 April 1999 / Accepted: 30 July 1999  相似文献   

5.
Fluorescent in situ hybridization (FISH) with multiple probes was used to analyze mitotic and meiotic chromosome spreads of Avena sativa cv ‘Sun II’ monosomic lines, and of A. byzantina cv ‘Kanota’ monosomic lines from spontaneous haploids. The probes used were A. strigosa pAs120a (a repetitive sequence abundant in A-genome chromatin), A. murphyi pAm1 (a repetitive sequence abundant in C-genome chromatin), A. strigosa pITS (internal transcribed spacer of rDNA) and the wheat rDNA probes pTa71 (nucleolus organizer region or NOR) and pTa794 (5S). Simultaneous and sequential FISH employing pairs of these probes allowed the identification and genome assignation of all chromosomes. FISH mapping using mitotic and meiotic metaphases facilitated the genomic and chromosomal identification of the monosome in each line. Of the 17 ‘Sun II’ lines analyzed, 13 distinct monosomic lines were found, corresponding to four monosomes of the A-genome, five of the C-genome and four of the D-genome. In addition, 12 distinct monosomic lines were detected among the 20 ‘Kanota’ lines examined, corresponding to six monosomes of the A-genome, three of the C-genome and three of the D-genome. The results show that 19 chromosomes out of 21 of the complement are represented by monosomes between the two genetic backgrounds. The identity of the remaining chromosomes can be deduced either from one intergenomic translocation detected on both ‘Sun II’ and ‘Kanota’ lines, or from the single reciprocal, intergenomic translocation detected among the ‘Sun II’ lines. These results permit a new system to be proposed for numbering the 21 chromosome pairs of the hexaploid oat complement. Accordingly, the A-genome contains chromosomes 8A, 11A, 13A, 15A, 16A, 17A and 19A; the C-genome contains chromosomes 1C, 2C, 3C, 4C, 5C, 6C and 7C; and the D-genome consists of chromosomes 9D, 10D, 12D, 14D, 18D, 20D and 21D. Moreover, the FISH patterns of 16 chromosomes in ‘Sun II’ and 15 in ‘Kanota’ suggest that these chromosomes could be involved in intergenomic translocations. By comparing the identities of individually translocated chromosomes in the two hexaploid species with those of other hexaploids, we detected different types of intergenomic translocations.  相似文献   

6.
M L Irigoyen  C Linares  E Ferrer  A Fominaya 《Génome》2002,45(6):1230-1237
Fluorescent in situ hybridization (FISH) employing multiple probes was used with mitotic or meiotic chromosome spreads of Avena sativa L. cv. SunII and its monosomic lines to produce physical chromosome maps. The probes used were Avena strigosa pAs120a (which hybridizes exclusively to A-genome chromosomes), Avena murphyi pAm1 (which hybridizes exclusively to C-genome chromosomes), A. strigosa pAs121 (which hybridizes exclusively to A- and D-genome chromosomes), and the wheat rDNA probes pTa71 and pTa794. Simultaneous and sequential FISH employing two-by-two combinations of these probes allowed the unequivocal identification and genome assignation of all chromosomes. Ten pairs were found carrying intergenomic translocations: (i) between the A and C genomes (chromosome pair 5A); (ii) between the C and D genomes (pairs 1C, 2C, 4C, 10C, and 16C); and (iii) between the D and C genomes (pairs 9D, 11D, 13D, and 14D). The existence of a reciprocal intergenomic translocation (10C-14D) is also proposed. Comparing these results with those of other hexaploids, three intergenomic translocations (10C, 9D, and 14D) were found to be unique to A. sativa cv. SunII, supporting the view that 'SunII' is genetically distinct from other hexaploid Avena species and from cultivars of the A. sativa species. FISH mapping using meiotic and mitotic metaphases facilitated the genomic and chromosomal identification of the aneuploid chromosome in each monosomic line. Of the 18 analyzed, only 11 distinct monosomic lines were actually found, corresponding to 5 lines of the A genome, 2 lines of the C genome, and 4 lines of the D genome. The presence or absence of the 10C-14D interchange was also monitored in these lines.  相似文献   

7.
The DNA sequence of an extracellular (EXC) domain of an oat (Avena sativa L.) receptor-like kinase (ALrk10) gene was amplified from 23 accessions of 15 Avena species (6 diploid, 6 tetraploid, and 3 hexaploid). Primers were designed from one partial oat ALrk10 clone that had been used to map the gene in hexaploid oat to linkage groups syntenic to Triticeae chromosome 1 and 3. Cluster (phylogenetic) analyses showed that all of the oat DNA sequences amplified with these primers are orthologous to the wheat and barley sequences that are located on chromosome 1 of the Triticeae species. Triticeae chromosome 3 Lrk10 sequences were not amplified using these primers. Cluster analyses provided evidence for multiple copies at a locus. The analysis divided the ALrk EXC sequences into two groups, one of which included AA and AABB genome species and the other CC, AACC, and CCCC genome species. Both groups of sequences were found in hexaploid AACCDD genome species, but not in all accessions. The C genome group was divided into 3 subgroups: (i) the CC diploids and the perennial autotetraploid, Avena macrostachya (this supports other evidence for the presence of the C in this autotetraploid species); (ii) a sequence from Avena maroccana and Avena murphyi and several sequences from different accessions of A. sativa; and (iii) A. murphyi and sequences from A. sativa and Avena sterilis. This suggests a possible polyphyletic origin for A. sativa from the AACC progenitor tetraploids or an origin from a progenitor of the AACC tetraploids. The sequences of the A genome group were not as clearly divided into subgroups. Although a group of sequences from the accession 'SunII' and a sequence from line Pg3, are clearly different from the others, the A genome diploid sequences were interspersed with tetraploid and hexaploid sequences.  相似文献   

8.
The inheritance of alpha-amylases was studied insix F2 populations of hexaploid oats (Avenasativa, A. byzantina, A. fatua, A. sterillis) usingpolyacrylamide gel electrophoresis. A total of 22 lociwas identified and described. Three main linkagesof four or five loci each and an additional two pairs oflinked loci were detected. It seems likely that thethree main linkage groups represent homeologous chromosomes. Matching of alpha-amylase profilesof hexaploid (AACCDD), tetraploid (AACC), and diploid(AA) species was made to assign the linkage groups toparticular subgenomes in the hexaploid oat. It was proposed that Linkage 1 (Amy12-Amy10-1-Amy4-Amy13-Amy11) belongs to the D-subgenome; Linkage2 (Amy10-2, Amy9-Amy8-Amy6) belongs to the A-subgenome;and Linkage 3 (Amy7-Amy3-Amy5-Amy2) belongs to the C-subgenome of the hexaploid oat. Themalt and greenalpha-amylases in hexaploid and tetraploid oats havebeen identified. Isozymes of greenalpha-amylase were slower in electrophoretic mobility than other isozymesand were governed by loci assigned to the A- andD-subgenomes.  相似文献   

9.
Peng YY  Baum BR  Ren CZ  Jiang QT  Chen GY  Zheng YL  Wei YM 《Hereditas》2010,147(5):183-204
Ribosomal ITS sequences are commonly used for phylogenetic reconstruction because they are included in rDNA repeats, and these repeats often undergo rapid concerted evolution within and between arrays. Therefore, the rDNA ITS copies appear to be virtually identical and can sometimes be treated as a single gene. In this paper we examined ITS polymorphism within and among 13 diploid (A and C genomes), seven tetraploid (AB, AC and CC genomes) and four hexaploid (ACD genome) to infer the extent and direction of concerted evolution, and to reveal the phylogenetic and genome relationship among species of Avena. A total of 170 clones of the ITS1-5.8S-ITS2 fragment were sequenced to carry out haplotype and phylogenetic analysis. In addition, 111 Avena ITS sequences retrieved from GenBank were combined with 170 clones to construct a phylogeny and a network. We demonstrate the major divergence between the A and C genomes whereas the distinction among the A and B/D genomes was generally not possible. High affinity among the A(d) genome species A. damascena and the ACD genome species A. fatua was found, whereas the rest of the ACD genome hexaploids and the AACC tetraploids were highly affiliated with the A(l) genome diploid A. longiglumis. One of the AACC species A. murphyi showed the closest relationship with most of the hexaploid species. Both C(v) and C(p) genome species have been proposed as paternal donors of the C-genome carrying polyploids. Incomplete concerted evolution is responsible for the observed differences among different clones of a single Avena individual. The elimination of C-genome rRNA sequences and the resulting evolutionary inference of hexaploid species are discussed.  相似文献   

10.
Using C-banding method and in situ hybridization with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C-17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.  相似文献   

11.
C Linares  A Serna  A Fominaya 《Génome》1999,42(4):706-713
A repetitive sequence, pAs17, was isolated from Avena strigosa (As genome) and characterized. The insert was 646 bp in length and showed 54% AT content. Databank searches revealed its high homology to the long terminal repeat (LTR) sequences of the specific family of Ty1-copia retrotransposons represented by WIS2-1A and Bare. It was also found to be 70% identical to the LTR domain of the WIS2-1A retroelement of wheat and 67% identical to the Bare-1 retroelement of barley. Southern hybridizations of pAs17 to diploid (A or C genomes), tetraploid (AC genomes), and hexaploid (ACD genomes) oat species revealed that it was absent in the C diploid species. Slot-blot analysis suggested that both diploid and tetraploid oat species contained 1.3 x 10(4) copies, indicating that they are a component of the A-genome chromosomes. The hexaploid species contained 2.4 x 10(4) copies, indicating that they are a component of both A- and D-genome chromosomes. This was confirmed by fluorescent in situ hybridization analyses using pAs17, two ribosomal sequences, and a C-genome specific sequence as probes. Further, the chromosomes involved in three C-A and three C-D intergenomic translocations in Avena murphyi (AC genomes) and Avena sativa cv. Extra Klock (ACD genomes), respectively, were identified. Based on its physical distribution and Southern hybridization patterns, a parental retrotransposon represented by pAs17 appears to have been active at least once during the evolution of the A genome in species of the Avena genus.  相似文献   

12.
Summary The Giemsa C-banding technique was used to identify individual meiotic and somatic chromosomes in 21 monosomic lines of Avena byzantina C. Koch cv Kanota (genome designation AACCDD). The hexaploid complement is composed of three sets of seven chromosome pairs. The heterochromatin in the putative diploid progenitors is located at the telomeres (genome A), at the centromeric and interstitial regions (genome C), or more evenly spread throughout the set (genome D). Comparisons based on C-banding between A. byzantina and its diploid progenitor species allowed us to allocate individual chromosomes into specific genomes. The C-banding technique may be useful for interspecific chromosome pairing analyses. Nucleolar activity and competition were studied using a silver-staining procedure. Only three chromosome pairs showed nucleolar organizer regions, thus indicating that nucleolar competition occurs naturally in hexaploid oats.  相似文献   

13.
An improved modification of genomic in situ hybridization (GISH) was proposed. It allows clear and reproducible discrimination between closely related genomes of both tetraploid and hexaploid wheat species due to preannealing of labeled DNA probes and prehybridization of chromosomal samples with blocking DNA. The method was applied to analyze intergenomic translocations 6A:6B and 1A:6B identified in the IG46147 and IG116188 samples of tetraploid wheat Triticum dicoccoides by C-banding. The structure of the rearranged chromosomes was defined for two translocation variants, and the breakpoints were identified on the chromosome arms. Possible application of the developed GISH variant to study genome reorganizations during speciation of allopolyploid plants in evolution is discussed.  相似文献   

14.
Q Yang  L Hanson  M D Bennett  I J Leitch 《Génome》1999,42(3):512-518
Allohexaploid wild oat, Avena fatua L. (Poaceae; 2n = 6x = 42), is one of the world's worst weeds, yet unlike some of the other Avena hexaploids, its genomic structure has been relatively little researched. Consequently, in situ hybridisation was carried out on one accession of A. fatua using an 18S-25S ribosomal DNA (rDNA) sequence and genomic DNA from A. strigosa (AA-genome diploid) and A. clauda (CC-genome diploid) as probes. Comparing these results with those for other hexaploids studied previously: (i) confirmed that the genomic composition of A. fatua was similar to the other hexaploid Avena taxa (i.e., AACCDD), (ii) identified major sites of rDNA on three pairs of A/D-genome chromosomes, in common with other Avena hexaploids, and (iii) revealed eight chromosome pairs carrying intergenomic translocations between the A/D- and C-genomes in the accession studied. Based on karyotype structure, the identity of some of these recombinant chromosomes was proposed, and this showed that some of these could be divided into two types, (i) those common to all hexaploid Avena species analysed (3 translocations) and (ii) one translocation in this A. fatua accession not previously observed in reports on other hexaploid Avena species. If this translocation is found to be unique to A. fatua, then this information, combined with more traditional morphological data, will add support to the view that A. fatua is genetically distinct from other hexaploid Avena species and thus should retain its full specific status.  相似文献   

15.
Fluorescent in situ (FISH) and Southern hybridization procedures were used to investigate the chromosomal distribution and genomic organization of the satellite DNA sequence As120a (specific to the A-genome chromosomes of hexaploid oats) in two tetraploid species, Avena barbata and Avena vaviloviana. These species have AB genomes. In situ hybridization of pAs120a to tetraploid oat species revealed elements of this repeated family to be distributed over both arms of 14 of the 28 chromosomes of these species. Genomes A and B were subsequently distinguished, indicating an allopolyploid origin for A. barbata. This was confirmed by assigning the satellited chromosomes to individual genomes, using the satellite itself and two ribosomal probes in simultaneous and sequential in situ hybridization analyses. Differences between A. barbata and A. vaviloviana genomes were also revealed by both FISH and Southern techniques using pAs120a probes. Whereas two B-genome chromosome pairs were found to be involved in intergenomic translocations in A. vaviloviana, FISH detected no intergenomic rearrangements in A. barbata. When using pAs120a as a probe, Southern hybridization also revealed differences in the hybridization patterns of the two genomes. A 1300-bp EcoRV fragment was present in A. barbata but absent in A. vaviloviana. This fragment was also detected in Southern analyses of A-genome diploid and hexaploid oat species. Received: 27 November 2000 / Accepted: 28 February 2001  相似文献   

16.
E N Jellen  R L Phillips  H W Rines 《Génome》1993,36(6):1129-1137
A chromosome C-banding protocol using Wright's stain was employed to compare chromosomes in cultivars and wild accessions of several hexaploid oat taxa (Avena spp.). This technique permits the identification of each of the 21 somatic hexaploid oat chromosomes. Digital images of C-banded cells were captured on computer and used to construct karyotypes of several oat accessions. Polymorphisms for C-bands among oat cultivars and wild accessions are described. These banding polymorphisms can be used to trace introgression of chromosomes from wild sources and to provide physical markers on the genetic map for oat. Although C-banding permits the identification of likely C-genome chromosomes based on comparisons with C-banding patterns in diploid and tetraploid Avena species, the A and D genomes cannot be readily differentiated based on their banding patterns.  相似文献   

17.
The chromosome structure of four different wild populations and a cultivated line of Triticum timopheevii (2n = 28, AtAtGG) relative to Triticum turgidum (2n = 28, AABB) was studied, using genomic in situ hybridisation (GISH) and C-banding analysis of meiotic configurations in interspecific hybrids. Two wild accessions and the cultivated line showed the standard C-banding karyotype. The other two accessions are homozygous for translocation 5At/3G and translocations 1G/2G and 5G/6G. GISH analysis revealed that all the T. timopheevii accessions carry intergenome translocations 6At/1G and 1G/4G and identified the position of the breakpoint in translocation 5At/3G. C-banding analysis of pairing at metaphase I in the hybrids with T. turgidum provides evidence that four species-specific translocations (6AtS/1GS, 1GS/4GS, 4GS/4AtL, and 4AtL/3AtL) exist in T. timopheevii, and that T. timopheevii and T. turgidum differ in the pericentric inversion of chromosome 4A. Bridge plus acentric fragment configurations involving 4AL and 4AtL were identified in cells at anaphase I. This result suggests that the paracentric inversion of 4AL from T. turgidum does not exist in T. timopheevii. Both tetraploid species have undergone independent and distinct evolutionary chromosomal rearrangements. The position, intercalary or subdistal, of the breakpoints in species-specific translocations and inversions contrasts with the position, at or close to the centromere, of intraspecific translocations. Different mechanisms for intraspecific and species-specific chromosome rearrangements are suggested.  相似文献   

18.
Intergenomic interactions that include homoeologous recombinations and intergenomic translocations are commonly observed in plant allopolyploids. Homoeologous recombinations have recently been documented in unisexual salamanders in the genus Ambystoma and revealed exchanged chromosomal segments between A. laterale and A.jeffersonianum genomes in individual unisexuals. We discovered intergenomic translocations in two widespread unisexual triploids A.laterale--2 jeffersonianum (or LJJ) and its tetraploid derivative A.laterale--3 jeffersonianum (or LJJJ) by genomic in situ hybridization (GISH). Two different types of intergenomic translocations were observed in two unisexual populations and one contained novel chromosomes generated by an intergenomic reciprocal translocation. We also observed chromosome deletions in several individuals and these chromosome fragmentations were all derived from the A. jeffersonianum genome. These observed intergenomic reciprocal translocations are believed to be caused by non-homologous pairing during meiosis followed by breakage-rejoining events. Genomes of unisexual Ambystoma undergo complicated structural changes that include various intergenomic exchanges that offer unisexuals genetic and phenotypic complexity to escape their evolutionary demise. Unisexual Ambystoma have persisted as natural nuclear genomic hybrids for about four million years. These unisexuals provide a vertebrate model system to examine the interaction of distinct genomes and to evaluate the corresponding genetic, developmental and evolutionary implications of intergenomic exchanges. Intergenomic translocations and homoeologous recombinations appear to be frequent chromosome reconstruction events among unisexual Ambystoma.  相似文献   

19.
Analysis of structural chromosomal polymorphism revealed the presence of a previously reported 2A·4B translocation common to all 15 strains of Ethiopian tetraploid wheat examined. Using the C-banding technique, we found two new translocations,T1B·6B and T5B·6B, and a pericentric inversion of chromosome 5A. The C-banding pattern indicated that in all three translocations the breakpoint was located in the centromeric region. Sequential N-banding and genomic in situ hybridization (GISH) confirmed the location of the breakpoint of translocation 2A·4B, and revealed that the breakpoint of another known translocation, 2A-2B, was in the proximal region of 2BL. The fixation of the 2A·4B translocation indicates the monophyletic origin of Ethiopian tetraploid wheat and the presence of a very severe bottleneck effect during its dispersal. Received: 29 June 1999 / Accepted: 18 February 2000  相似文献   

20.
Hexaploid/tetraploid and tetraploid/hexaploid wheat hybrids were established using the hexaploid (Triticum aestivum L.) bread wheat LRC2010-150 and the tetraploid durum wheat (T. turgidum spp. durum) WID802. Thirty F2 progeny from each cross were characterised using Diversity Arrays Technology (DArTseq?) markers to determine whether there are differences between the crosses in the proportion of A, B and D genomic material inherited from each parent. Inheritance of the A and B genome from the tetraploid durum parent varied from 32 to 63% among the 60 lines assessed, and results indicated significant differences between the two F2 populations in the mean overall proportion of chromosomes A and B inherited from each parent. Significant differences were also observed between the crosses in the proportion of chromosomal segments on 2B, 3A, 3B and 4A inherited from the tetraploid parent. The F2 populations also showed significant differences in the average retention of D chromosomes per line with the tetraploid/hexaploid cross retaining a mean of 2.83 chromosomes while the reciprocal cross retained a mean of 1.8 chromosomes per line. A strong negative correlation was observed in individual lines from both populations between the proportion of the A and B genome inherited from the tetraploid durum parent and the retention of the D genome. The implication of these results for the design of efficient crossing strategies between hexaploid and tetraploid wheats is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号