首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Microbial production of spider silk proteins.   总被引:9,自引:0,他引:9  
The remarkable properties of spider dragline silk and related protein polymers will find many applications if the materials can be produced economically. We have demonstrated the production of high molecular weight spider dragline silk analog proteins encoded by synthetic genes in several microbial systems, including Escherichia coli and Pichia pastoris. In E. coli, proteins of up to 1000 amino acids in length could be produced efficiently, but the yield and homogeneity of higher molecular weight silk proteins were found to be limited by truncated synthesis, probably as a result of ribosome termination errors. No such phenomenon was observed in the yeast P. pastoris, where higher molecular weight silk proteins could be produced without heterogeneity due to truncated synthesis. Spider dragline silk analog proteins could be secreted by P. pastoris when fused to both the signal sequence and N-terminal pro-sequence of the Saccharomyces cerevisiae alpha-mating factor gene.  相似文献   

2.
Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In our studies we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus. Analysis of the physical structure of egg case silk using scanning electron microscopy demonstrates the presence of small and large diameter fibers. By using the strong protein denaturant 8 M guanidine hydrochloride to solubilize the fibers, we demonstrated by SDS-PAGE and protein silver staining that an abundant component of egg case silk is a 100-kDa protein doublet. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called ecp-1, which encodes for one of the protein components of the 100-kDa species. BLAST searches of the NCBInr protein data base using the primary sequence of ECP-1 revealed similarity to fibroins from spiders and silkworms, which mapped to two distinct regions within the ECP-1. These regions contained the conserved repetitive fibroin motifs poly(Ala) and poly(Gly-Ala), but surprisingly, no larger ensemble repeats could be identified within the primary sequence of ECP-1. Consistent with silk gland-restricted patterns of expression for fibroins, ECP-1 was demonstrated to be predominantly produced in the tubuliform gland, with lower levels detected in the major and minor ampullate glands. ECP-1 monomeric units were also shown to assemble into higher aggregate structures through the formation of disulfide bonds via a unique cysteine-rich N-terminal region. Collectively, our findings provide new insight into the components of egg case silk and identify a new class of silk proteins with distinctive molecular features relative to traditional members of the spider silk gene family.  相似文献   

3.
The remarkable properties of spider dragline silk and related protein polymers will find many applications if the materials can be produced economically. We have demonstrated the production of high molecular weight spider dragline silk analog proteins encoded by synthetic genes in several microbial systems, including Escherichia coli and Pichia pastoris. In E. coli, proteins of up to 1000 amino acids in length could be produced efficiently, but the yield and homogeneity of higher molecular weight silk proteins were found to be limited by truncated synthesis, probably as a result of ribosome termination errors. No such phenomenon was observed in the yeast P. pastoris, where higher molecular weight silk proteins could be produced without heterogeneity due to truncated synthesis. Spider dragline silk analog proteins could be secreted by P. pastoris when fused to both the signal sequence and N-terminal pro-sequence of the Saccharomyces cerevisiae alpha-mating factor gene.  相似文献   

4.
Eisoldt L  Thamm C  Scheibel T 《Biopolymers》2012,97(6):355-361
Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process.  相似文献   

5.
Spider dragline silk is a natural fiber that has excellent tensile properties; however, it is difficult to produce artificially as a long, strong fiber. Here, the spider (Araneus ventricosus) dragline protein gene was cloned and a transgenic silkworm was generated, that expressed the fusion protein of the fibroin heavy chain and spider dragline protein in cocoon silk. The spider silk protein content ranged from 0.37 to 0.61% w/w (1.4–2.4 mol%) native silkworm fibroin. Using a good silk-producing strain, C515, as the transgenic silkworm can make the raw silk from its cocoons for the first time. The tensile characteristics (toughness) of the raw silk improved by 53% after the introduction of spider dragline silk protein; the improvement depended on the quantity of the expressed spider dragline protein. To demonstrate the commercial feasibility for machine reeling, weaving, and sewing, we used the transgenic spider silk to weave a vest and scarf; this was the first application of spider silk fibers from transgenic silkworms.  相似文献   

6.
Dragline spider silk fibers have extraordinary attributes as biomaterials of superior strength and toughness. Previously we have shown that the conserved C-terminal domain of a dragline spider silk protein is necessary for directing oriented microfiber formation. Here we present for the first time a state-of-the-art model of the three-dimensional structure of this domain, and, by comparing several dragline proteins, identify its key evolutionarily conserved features. Further, using the baculovirus expression system, we produced recombinant proteins that are mutated in the unique cysteine residue present in the domain. While a conservative mutation to serine allows fiber formation, thus demonstrating that there is no need for disulfide bond formation in this system, a mutation to arginine significantly alters the local surface properties, preventing fiber formation. These experimental results are in agreement with our model, wherein the cysteine is localized in a highly conserved hydrophobic loop that we predict to be important for the protein-protein interactions of this domain and hence also for fiber formation.  相似文献   

7.
In this paper, we explore the impact of dietary deprivation, where spiders are provided diets missing one or more of the amino acids, on the properties of the spider dragline silk spun after one month on the diet. Cohorts of female N. clavipes spiders were selected for diets deprived of alanine (Ala) and glycine (Gly), arginine (Arg), leucine (Leu), or tyrosine (Tyr), and their silk was harvested twice weekly during the one-month course of the diet. Significant mechanical differences are observed after as little as 6 days on the diet. Utilizing conventional tensile testing methods, single fibers were strained to break so as to study the influence of diet on the stress/strain properties. Diets deprived of Ala and Gly appear to most directly impact the load-bearing foundation of dragline silk. Diets deprived of Arg, Tyr, and possibly Leu reduce the strength of the silk, and diets missing Tyr and Leu reduce the strain-to-failure. Observations obtained from ESEM photos of the fracture interfaces after tensile testing illustrate the fracture mechanics of spider silk. Both solid-state NMR and amino acid analysis of the digested protein suggest, however, that the relationship between diet and amino acid incorporation into the silk fiber is not straightforward.  相似文献   

8.
Spider silk proteins have mainly been investigated with regard to their contribution to mechanical properties of the silk thread. However, little is known about the molecular mechanisms of silk assembly. As a first step toward characterizing this process, we aimed to identify primary structure elements of the garden spider's (Araneus diadematus) major dragline silk proteins ADF-3 and ADF-4 that determine protein solubility. In addition, we investigated the influence of conditions involved in mediating natural thread assembly on protein aggregation. Genes encoding spider silk-like proteins were generated using a cloning strategy, which is based on a combination of synthetic DNA modules and PCR-amplified authentic gene sequences. Comparing secondary structure, solubility, and aggregation properties of the synthesized proteins revealed that single primary structure elements have diverse influences on protein characteristics. Repetitive regions representing the largest part of dragline silk proteins determined the solubility of the synthetic proteins, which differed greatly between constructs derived from ADF-3 and ADF-4. Factors, such as acidification and increases in phosphate concentration, which promote silk assembly in vivo generally decreased silk protein solubility in vitro. Strikingly, this effect was pronounced in engineered proteins comprising the carboxyl-terminal nonrepetitive regions of ADF-3 or ADF-4, indicating that these regions might play an important role in initiating assembly of spider silk proteins.  相似文献   

9.
蜘蛛丝是自然界综合性能优良的天然蛋白质纤维之一,因其具有良好的生物相容性和可降解性在生物医学领域具有潜在的应用前景。在本室已经构建的RGD-蜘蛛拖丝蛋白基因16多聚体基础上,通过首尾相连、倍加等方法进一步多聚化,得到RGD-蜘蛛拖丝蛋白基因32和64多聚体,分别将这两种多聚体与原核高效表达载体pET-30a( )连接,转化大肠杆菌BL21(DE3)pLysS,得到的32多聚体表达重组子命名为pNSR32,64多聚体表达重组子命名为pNSR64。通过酶切、琼脂糖电泳鉴定及对目的片段的测序均与理论值相符。将32和64多聚体基因序列注册GenBank,序列号分别为DQ469929和DQ837297。重组体pNSR32和pNSR64经IPTG诱导表达,SDS-PAGE图谱显示表达产物分子量分别为102kD和196.6kD,与天然蛛丝蛋白分子量接近并与理论值相吻合。高分子量的蛛丝蛋白在原核生物成功实现高效表达,在国内外尚未见报道。在此基础上对pNSR32工程菌进行高密度发酵,建立了简单高效的目的蛋白纯化工艺。  相似文献   

10.
Orb-weaving spiders produce webs using two types of silk that have radically different mechanical properties. The dragline silk used to construct the supporting frame and radii of the web is stiff and as strong as steel, while the capture spiral is much weaker but more than ten times as extensible. This remarkable divergence in mechanical properties has been attributed to the aqueous glue that coats the capture spiral, which is thought to decrease capture spiral stiffness and increase its extensibility. However, discerning the effect of the aqueous glue on fiber performance is complicated because dragline silk and the capture spiral are assembled from different proteins, which may also affect mechanical performance. Here, we use the sticky gumfooted lines of black widow cobwebs to test the effect of the addition of aqueous glue on the mechanical properties of dragline silk. We also surveyed orb-webs spun by a broad range of species for bundles of looped silk. Such bundles, termed windlasses, have been thought to increase capture spiral extensibility by "paying out" additional lengths of silk. Our results suggest that neither plasticization of silk by aqueous glue nor excess silk in windlasses can by themselves account for the remarkable extensibility of orb-weaver capture silk compared to other spider silks. This argues that the unique amino acid motifs of the flagelliform fibroins that constitute the core of the capture spiral play an essential role in capture silk's extreme extensibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号