首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Arbuscular mycorrhizal (AM) fungi are mainly thought to facilitate phosphorus uptake in plants, but they can also perform several other functions that are equally beneficial. Our recent study sheds light on the factors determining one such function, enhanced plant protection from root pathogens. Root infection by the fungal pathogen Fusarium oxysporum was determined by both plant susceptibility and the ability of an AM fungal partner to suppress the pathogen. The non-susceptible plant species (Allium cepa) had limited F. oxysporum infection even without AM fungi. In contrast, the susceptible plant species (Setaria glauca) was heavily infected and only AM fungi in the family Glomeraceae limited pathogen abundance. Plant susceptibility to pathogens was likely determined by contrasting root architectures between plants, with the simple rooted plant (A. cepa) presenting fewer sites for infection. AM fungal colonization, however, was not limited in the same way in part because plants with fewer, simple roots are more mycorrhizal dependent. Protection only by Glomus species also indicates that whatever the mechanism(s) of this function, it responds to AM fungal families differently. While poor at pathogen protection, AM fungal species in the family Gigasporaceae most benefited the growth of the simple rooted plant species. Our research indicates that plant trait differences, such as root architecture can determine how important each mycorrhizal function is to plant growth but the ability to provide these functions differs among AM fungi.Key words: arbuscular mycorrhizal fungi, Fusarium oxysporum, root architecture, pathogen protection, multi-functionalityArbuscular mycorrhizas (AM) represent the oldest and most widespread symbiosis with land plants.1 Most mycorrhizal research has focused on the ability of AM fungi to facilitate nutrient uptake, particularly phosphorus.2 Although researchers recognize that AM fungi are multi-functional,3 it is not clear what factors determine which function an AM fungus performs or its relative importance to the plant.4 Newsham et al. (1995)3 hypothesized that AM function is based on root architecture: plants with simple rooting systems are dependent on mycorrhizas for nutrient uptake, while those with complex root systems are less dependent on mycorrhizas for nutrient uptake, but are more susceptible to root pathogens because of increased numbers of infections sites.3 These two functions, phosphorus uptake and enhanced pathogen protection from mycorrhizas also depend on the identity of the fungus. Arbuscular mycorrhizal fungi in the family Gigasporaceae are more effective at enhancing plant phosphorus, while AM fungi in the Glomeraceae better protect plants from root pathogens.5Our results support both plant and fungal control of a common pathogen, Fusarium oxysporum, and the interaction between these two factors ultimately determined the level of pathogen infection and plant mycorrhizal benefit. We inoculated two plant species that have contrasting root architectures with one of six AM fungal species from two families (or no AM fungi). After five months of growth, plants were inoculated with F. oxysporum, grown for another month and then harvested. All plant seeds and fungi were collected in a local old field community.6 Allium cepa (garden onion) was not susceptible to F. oxysporum likely because it has only a few adventitious roots below the main bulb that do not present many sites for infection. In contrast, Setaria glauca (yellow foxtail) was heavily infected by F. oxysporum and has fine roots with increased numbers of branching points and lateral meristems where fungi can colonize.7 For the susceptible plant (S. glauca), AM fungal species from the family Glomeraceae were effective at reducing pathogen abundance while species from the Gigasporaceae were not. Forming a symbiosis with a Glomus species resulted in S. glauca plants that were as large as control plants. AM fungal species from the family Gigaspoaceae were more beneficial to growth of the simple rooted A. cepa, which had fewer roots to take up soil nutrients.Reduced rooting structures may limit pathogen infection sites, but AM fungal colonization was not limited in the same way and may actually alter plant root architecture. While the simple rooted A. cepa had limited pathogen susceptibility, it had twice the AM fungal colonization of the complex rooted S. glauca. Because the simple rooted plant has a greater dependence on mycorrhizas,8 it likely transmits chemical signals to rapidly initiate mycorrhizal formation,9 but then may have less control on the spread of AM fungi within the root. In contrast, S. glauca is more susceptible to fungal pathogens and may be less mycorrhizal dependent in nature.10 As a result, S. glauca may treat all colonizing root fungi as potential parasites. Colonization by AM fungi from the Glomeraceae was also much greater than those in the Gigasporaceae due to differences in fungal life history strategy between these families.11,12 AM fungal colonization can reduce root branching in plants and alter plant allocation to roots, thereby increasing mycorrhizal dependence for nutrients10,13 and potentially reducing pathogen infection sites. Mycorrhizal induced changes to plant root architecture may therefore reinforce current mycorrhizal associations and alter future fungal colonization attempts.14 An important next step is to test if AM fungal families (or species) alter plant root architecture in different ways and the degree to which these effects depend on colonization timing and the plant host.Our study did not isolate the particular mechanism by which AM fungi control pathogens, but this mechanism clearly differentiates between AM fungal families. AM fungi can control pathogens through several mechanisms including direct competition for colonization sites, indirect initiation of plant defensive responses or altering other rhizosphere biota.15 Although these AM fungal families differ in the intensity of root colonization,11 percentage of root length colonized by an AM fungus is a poor predictor of pathogen limitation compared to family identity,12,16 suggesting that direct competition for space is unlikely. AM fungi share many cell surface molecules with pathogenic fungi like Fusarium.17 These molecules can act as signals that initiate plant production of defensive compounds such as phytoalexins, phenolics and other compounds.18 While AM fungi appear to evade these defenses, only AM fungal species in the family Glomeraceae would have elicited plant responses which altered future infection by F. oxysporum. AM fungi in the Gigasporaceae may differ more from F. oxysporum in their chemical signals or not colonize roots sufficiently to induce a sustained, system-wide plant response. In addition, many rhizosphere related microbes are antagonistic to pathogenic fungi15 and may differ in their response to the different AM fungal families.19 Because rhizosphere microbes also differ among plant species, plant pathogen protection may be influenced by multiple ecological interactions that determine the specific cases when mycorrhizal pathogen protection occurs. To distinguish between these mechanisms, future experiments could test whether biochemical similarity or ecological similarity (especially with other soil biota) between an AM fungus and fungal pathogen can predict mycorrhizal induced pathogen protection.Plant and fungal identity clearly affect AM fungal function and benefit, but to accurately use AM fungi in agriculture and restoration20,21 we must clearly understand how functional mechanisms differ. Different mycorrhizal functions may be based on common plant traits like root architecture, but ecology, colonization timing and environment may alter the specific function AM fungi provide and its importance to plants. While it may be useful to establish greenhouse rules about which fungal species perform specific mycorrhizal functions, predicting their role in more complex systems relies on understanding if other factors will enhance or negate these effects. Most AM fungal species vary in their ability to perform each function and these can be locally adapted to limiting soil nutrients.22 In plants, there is also a range to which specific mycorrhizal functions may benefit plant fitness, and these responses are based on both plant traits (which change throughout a plant''s life cycle) and the local environment.23,24 Given this variation, it is critical to understand if AM fungi can respond to cues from the plant or the environment to identify what factors limit plant growth and whether a the most effective AM fungus shows a greater response.  相似文献   

2.
3.
4.
Mycorrhizal fungi form a mutualistic relationship with the roots of most plant species. This association provides the arbuscular mycorrhizal (AM) fungus with sugars while the fungus improves the uptake of water and mineral nutrients in the host plant. Moreover, the induction of defense gene expression in mycorrhizal roots has been described. While salicylic acid (SA)-regulated Pathogenesis-Related (PR) proteins accumulate in rice roots colonized by the AM fungus G. intraradices , the SA content is not significantly altered in the mycorrhizal roots. Sugars, in addition to being a source of carbon for the fungus, might act as signals for the control of defense gene expression. We hypothesize that increased demands for sugars by the fungus might be responsible for the activation of the host defense responses which will then contribute to the stabilization of root colonization by the AM fungus. An excessive root colonization might change a mutualistic association into a parasitic association.Key words: Glomus intraradices, glucose, fructose, Oryza sativa, pathogenesis-related (PR), salicylic acid (SA), sucrose, sugarsThe arbuscular mycorrhizal (AM) fungi are obligate biotrophs that establish mutualistic associations with the roots of over 90% of all plant species. AM fungi improve the uptake of water and mineral nutrients in the host plant, mainly phosphorus and nitrogen, in exchange for sugars generated from photosynthesis. The benefits of the AM symbiosis on plant fitness are largely known, including increased ability to cope with biotic and abiotic stresses.1,2 In fact, the amount of carbon allocated to mycorrhizal roots might be up 20% of the total photosynthate income.3 During root colonization, the AM fungus penetrates into the root through the epidermal cells and colonizes the cortex. In the root cortical cells, the fungus forms highly branched structures, called arbuscules, which are the site of the major nutrient exchange between the two symbionts.4,5 The legumes Medicago truncatula and Lotus japonicus have been widely adopted as the reference species for studies of the AM symbiosis. Cereal crops and rice in particular are also able to establish symbiotic associations with AM fungi.6,7 Arabidopsis thaliana, the model system for functional genomics in plants, has no mycorrhization ability.It is also well known that plants have evolved inducible defense systems to protect themselves from pathogen invasion. Challenge with a pathogen activates a complex variety of defense reactions that includes the rapid generation of reactive oxygen species (ROS), changes in ion fluxes across the plasma membrane, cell wall reinforcement and production of antimicrobial compounds (e.g., phytoalexins).8 One of the most frequently observed biochemical events following pathogen infection is the accumulation of pathogenesis-related (PR) proteins.9 For some PR proteins antimicrobial activities have been described (e.g., chitinases, β-1,3-glucanases, thionins or defensins). The plant responses to pathogen attack are activated both locally and systemically. The phytohormones salicyclic acid (SA), jasmonic acid (JA), ethylene (ET) and abscisic acid (ABA) act as defense signaling molecules for the activation of defense responses.10 Whereas SA-dependent signaling often provides resistance to biotrophic pathogens, JA/ET-dependent signaling is effective against necrotrophic pathogens.11 During plant-pathogen interactions, cross-talk between SA and JA/ET signaling pathways provides the plant with the opportunity to prioritize one pathway over another to efficiently fine-tune its defense response to the invading pathogen. Contrary to biotrophic pathogens which exhibit a high degree of host specificity, the AM fungi manage to colonize a broad range of plant species.Evidence also exists on the existence of common mechanisms and signaling pathways governing responses to AM and pathogenic fungi.2,12,13 Alterations in the content of hormones acting as defense signals also appear to occur during the AM symbiosis. As an example, JA and its derivatives (jasmonates) are believed to play an important role during the AM symbiosis in M. truncatula or tomato plants.14,15 However, controversial data exists in the literature concerning the involvement of the various defense-related hormones during AM functioning. In particular, our current understanding of SA signaling during AM symbiosis is not clear.We recently documented the symbiotic proteome of the rice roots during their interaction with the AM fungus Glomus intraradices.6 A majority of the proteins identified in the rice symbiotic proteome are proteins with a function in defense responses or sugar metabolism. Among the proteins that accumulated at high levels in mycorrhizal rice roots compared to non mycorrhizal roots were PR proteins belonging to different PR families, such as PR1, chitinases (PR3), PR5 and several PR10 proteins. The PR1 and PBZ1 (a member of the PR10 family of PR proteins) genes are considered markers of the activation of defense responses in rice plants.16,17 Of interest, the expression of many of the AM-regulated PR genes was previously reported to be induced by SA.16,1820 Proteins acting as oxidative stress protectors, such as ascorbate peroxidases, peroxidases and glutathione-S-transferases, also accumulated in mycorrhizal rice roots. Together, these observations support that the plant''s immune system is activated in the mycorrhizal rice root.To gain further insights into the molecular mechanisms governing PR gene expression in mycorrhizal roots, the SA and sugar contents of mycorrhizal roots were determined. Towards this end, rice (Oryza sativa ssp. japonica cv. Senia) plants were inoculated with the AM fungus G. intraradices.6 At 42 days post-inoculation (dpi), the overall colonization of the rice roots ranged from 25 to 30% as judged by microscopical observations of trypan blue-stained roots (results not shown; similar results were reported previously in reference 6). By this time, all the events related to fungal development, namely intraradical hyphae, arbuscules at different morphological stages of formation and vesicles, were present in G. intraradices-inoculated roots, thus confirming the establishment of the symbiotic association in the rice roots.Knowing that many AM-regulated proteins are also regulated by SA in rice roots, it was of interest to determine whether the level of endogenous SA increases in mycorrhizal roots compared to non mycorrhizal roots. In plants, intracellular SA is found predominantly as free SA and its sugar conjugate SA-glucoside (SAG). Root samples were analyzed for SA content, by measuring the level of both free SA and SAG as previously described in reference 21. This analysis revealed no significant differences, neither in free nor in SAG, between mycorrhizal and non mycorrhizal roots (Fig. 1). Then, it appears that although the expression of PR genes (functioning in a SA-dependent manner) is activated during the AM symbiosis, the fungus G. intraradices do not exploit the SA-mediated signaling pathway for induction of PR genes.Open in a separate windowFigure 1SA content, free SA and SA-glucoside (SAG) conjugate, in roots of mock-inoculated (−Gi) and G. intraradices-inoculated (+Gi) rice plants. SA determination was carried out at 42 days post-inoculation with G. intraradices. Three independent biological samples and three replicates per biological sample were used for quantification of SA. Two out of the three samples were the same ones used for the characterization of the symbiotic proteome in which the accumulation of SA-regulated PR genes was observed in reference 6. FW, fresh weight. Bars represent the means ± standard error.On the other hand, a direct link between sugar metabolism and the plant defense response has been established, including the phenomenon of high sugarmediated resistance and the finding that various key PR genes are induced by sugars. Transgenic approaches that lead to alterations in photoassimilate partitioning, either sucrose or hexoses, also alter PR gene expression.22,23 In other studies, a SA-independent induction of PR genes by soluble sugars, sucrose, glucose and fructose, was reported in reference 24.Sucrose, the main form of assimilated carbon during photosynthesis, is transported to the root tissues via the phloem where it becomes available to the root cells. As previously mentioned, characterization of the rice symbiotic proteome revealed alterations in the accumulation of proteins involved in sugar metabolism, such as enzymes involved in glucolysis/gluconeogenesis (e.g., fructose-1,6-bisphophate aldolase, enolase) or in pentose interconversions (e.g., UDP-glucose dehydrogenase).6 Because the plant provides sugars to the fungus, it is not surprising to find alterations in enzymes involved in sugar metabolism in the mycorrhizal roots. Evidence also supports that AM fungi acquire hexoses from the host cell and transform it into trehalose and glycogen, the typical sugars in the fungus.25 Utilization of sucrose then requires hydrolysis in the plant cell which can be performed by sucrose synthase, producing UDP-glucose and fructose or invertases, producing glucose and fructose. Along with this, increased activities of invertases and sucrose synthases or increased expression of their corresponding genes, have been described during AM symbiotic interactions.26,27 Very recently, the MtSucS1 sucrose synthase gene was reported to be essential for the establishment and maintenance of the AM symbiosis in Medicago truncatula.28 In this context, we decided to explore whether colonization by G. intraradices has an effect on the accumulation of soluble sugars in rice roots.Sucrose, glucose and fructose content were measured enzymatically23 in the rice roots at 42 days post-inoculation with G. intraradices . A tendency to a higher sucrose level was observed in mycorrhizal roots compared to non-mycorrhizal roots (Fig. 2). Concerning the hexose content, the mycorrhizal roots had a significantly lower hexose, both glucose and fructose levels, compared to non-mycorrhizal roots (p ≤ 0.05, Fig. 2). This finding is in agreement with results reported by other authors indicating that the fungal symbiont takes up and uses hexoses within the root.29,30 The observation that the sucrose content is not significantly affected by mycorrhiza functioning, indicates that the host cell is able to sense sucrose concentration in order to maintain it at sufficient but constant levels to satisfy the demand for sugars by the fungal symbiont.Open in a separate windowFigure 2Sugar content in roots of rice plants inoculated with G. intraradices (+Gi) or mock-inoculated (−Gi). (A) Sucrose content. (B) Glucose content. (C) Fructose content. Measurements were made at 42 days post-inoculation with G. intraradices. Bars represent the means ± standard error.Clearly, the outcome of the AM symbiosis is an overall improvement of the fitness of both partners: the plant supplies the fungus with photosynthates whereas the fungus delivers nutrients from the soil to the host plant. Variations in the extent of colonization of the AM fungi will impose different carbon demands on the plants. However, a high demand of photosynthates by the mycorrhizal root might result in increased mycorrhization which, in turn, might be detrimental for the host plant. The rate of colonization and the amount of fungal biomass must then be tightly controlled by the host plant. We postulate that an increased sink strength by AM colonization might result in transient and/or localized increases in sugar concentrations in the root cell which might be the signal for the activation of defense gene expression. A schematic representation of plant responses associated with increased demands for sugars and deployment of defense responses is shown in Figure 3. According to this model, sugars might play a dual role during the AM symbiosis: (1) sugars are transferred from the plant to the fungus in exchange of mineral nutrients and (2) sugars alter host gene expression, leading to the activation of defense-related genes. This will allow the host plant to avoid an excessive root colonization by the AM fungus that might cause negative effects on the plant''s fitness. A complex exchange and interplay of signals between plant roots and AM fungi must then operate during functioning of the AM symbiosis for coordination of joint nutrient resource explotation strategies and control of the plant''s immune system. During evolution, co-adaptation between the two symbionts, the AM fungi and the host plant, must have occurred for stabilization of mycorrhizal cooperation and optimal functioning of mycorrhizal associations along the mutualism-parasitism continuum.Open in a separate windowFigure 3Proposed model for a sugar mediated-activation of defense-related genes in mycorrhizal roots. In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. Arbuscules are the site of mineral nutrient transfer to the plant and the site of carbon acquisition by the fungus. Although arbuscules form within the root cortical cells, they remain separated from the plant cell cytoplasm by a plant-derived membrane, the periarbuscular membrane. In this way, an interface is created between the plant and fungal cells which appears to be optimal for nutrient transfer. Sucrose is transported through the phloem into the root. In the root cell, sucrose is hydrolyzed by host invertase and sucrose synthase activities before uptake by the AM fungus. Hexose uptake at the plant-fungus interfase might be passive with a concentration gradient maintained by rapid conversion of hexoses taken up by the fungus to trehalose and glycogen. Active mechanisms might also operate for hexose transport processes between the host cell and the symbiont. Under conditions of a high demand for sugars by the AM fungus, transient increases in sugar content will occur in the root cells which would be the signal for the activation of the host defense responses. The host-produced defense compounds would stabilize the level of root colonization by the AM fungus. An excessive root colonization might change the mutualistic association into a parasitic one.  相似文献   

5.
Root colonization by the basidiomycete fungus Piriformospora indica induces host plant tolerance against abiotic and biotic stress, and enhances growth and yield. As P. indica has a broad host range, it has been established as a model system to study beneficial plant-microbe interactions. Moreover, its properties led to the assumption that P. indica shows potential for application in crop plant production. Therefore, possible mechanisms of P. indica improving host plant yield were tested in outdoor experiments: Induction of higher grain yield in barley was independent of elevated pathogen levels and independent of different phosphate fertilization levels. In contrast to the arbuscular mycorrhiza fungus Glomus mosseae total phosphate contents of host plant roots and shoots were not significantly affected by P. indica. Analysis of plant development and yield parameters indicated that positive effects of P. indica on grain yield are due to accelerated growth of barley plants early in development.Key words: mycorrhiza, barley development, Piriformospora indica, phosphate uptake, grain yield, pathogen resistanceThe wide majority of plant roots in natural ecosystems is associated with fungi, which very often play an important role for the host plants'' fitness.1 The widespread arbuscular mycorrhizal (AM) symbiosis formed by fungi of the phylum Glomeromycota is mainly characterized by providing phosphate to their host plant in exchange for carbohydrates.2,3 Fungi of the order Sebacinales also form beneficial interactions with plant roots and Piriformospora indica is the best-studied example of this group.4 This endophyte was originally identified in the rhizosphere of shrubs in the Indian Thar desert,5 but it turned out that the fungus colonizes roots of a very broad range of mono- and dicotyledonous plants,6 including major crop plants.79 Like other mutualistic endophytes, P. indica colonizes roots in an asymptomatic manner10 and promotes growth in several tested plant species.6,11,12 The root endophyte, moreover, enhances yield in barley and tomato and increases in both plants resistance against biotic stresses,7,9 suggesting that application in agri- and horticulture could be successful.  相似文献   

6.
The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease.Key words: tomato, Clavibacter michiganensis subsp. michiganensis, ethylene, basal defense, pathogen-associated molecular patternsLittle is known on the strategies employed by Gram-positive phytopathogenic bacteria to sense the presence of the host plant, penetrate and colonize tissue, and counteract plant defense responses. Also largely unexplored are the molecular mechanisms associated with detection of Gram-positive bacteria by the host plant and with the activation of attempted defense responses.Among the most devastating Gram-positive disease agents are actinobacteria of the genus Clavibacter whose subspecies cause systemic infections of the xylem in different plant species.1 The subspecies Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker of tomato (Solanum lycopersicum), an economically important disease causing yield losses worldwide.1 In recent years important insight into the molecular mechanism of Cmm pathogenicity has been achieved,1 and genome sequence of a Cmm strain has been established.2 Major Cmm pathogenicity determinants are plasmid borne and include the β-1,4-endocellulase CelA,3 and the putative serine protease Pat-1.4 Additional genes important for virulence are located in a pathogenicity island of about 129 kb on the Cmm chromosome which has a relatively low G + C content and is required for effective Cmm colonization of tomato plants.2Tomato is an economically important crop amenable to genetic analysis and transformations. Many resources are available for this plant species, including germplasm collections, natural and induced mutants, an extensive expressed sequence tag database and an ongoing genome sequencing project.5 In addition, because of its experimental tractability, tomato plants have been widely used to study plant disease resistance and susceptibility. As genetic and molecular tools for both Cmm and tomato are in place, the tomato-Cmm pathosystem represents an excellent model to study the interplay between virulence determinants of a Gram-positive phytopathogenic bacterium and defense responses of a crop plant.To get insight into host responses occurring during the tomato-Cmm compatible interaction and molecular mechanisms associated with the development of wilt and canker disease symptoms, we recently analyzed gene expression profiles of tomato stems infected with Cmm.6 This analysis revealed a clear activation of basal defense responses, which are typically observed upon plant perception of pathogen-associated molecular patterns (PAMPs).7 These include production and scavenging of free oxygen radicals, induction of defense-related genes, enhanced protein turnover, and hormone biosynthesis. Interestingly, several tomato genes encoding proteins with characteristics of cell-surface receptors were differentially expressed in response to Cmm infection.6 These proteins can be considered as candidate receptors for Cmm PAMPs and include two receptor-like kinases, a homolog of the receptor for the fungal PAMP ethylene-inducing xylanase from Trichoderma viride,8 and the Ve1 resistance protein, which confers resistance in tomato to the vascular disease Verticillium wilt.9It remains to be elucidated what are the Cmm PAMPs perceived by tomato plants. Cold-shock protein from Gram-positive bacteria and different microbial patterns of Gram-negative bacteria, including lipopolysaccharides, flagellin, and the translational elongation factor EF-TU, were shown to act as PAMPs in plants.10 Similarly, Cmm cold shock protein or cell wall components, such as peptidoglycan, lipoteichoic acid, and lipopeptides, which function as Gram positive-derived PAMPs in animal systems11, may act as PAMPs during the tomato-Cmm interaction. Additional possible Cmm PAMPs are exopolysaccharides, which are produced in large amounts by the bacterium and may interact directly with surface-exposed plant proteins.1 The numerous extracellular cell wall degrading enzymes secreted by Cmm may also function as PAMPs, as observed for the fungal ethylene-inducing xylanase.2,12 Alternatively, by virtue of their hydrolytic activity, these enzymes may release plant cell wall fragments that are recognized by PAMP receptors. Indeed, different β-glucan fragments released from plant cell walls were shown to elicit plant basal defense responses.13,14How Cmm copes with the activation of basal defense responses is largely unknown. Many potential virulence determinants that might interfere with the plant defense reaction are clustered in the Cmm pathogenicity island, which is essential for effective plant colonization.2 Several extracellular serine proteases are encoded in this region and inactivation of part of them by gene replacement drastically reduced Cmm colonization of tomato plants.2 Although their targets are still unknown, these proteins might interfere with plant signaling pathways as it was described for certain cysteine proteases that serves in Gram-negative bacteria as suppressors of plant defenses.15 An additional candidate for interference with plant signaling may be a tomatinase, also encoded in the Cmm pathogenicity island, because hydrolysis products of α-tomatine were shown to suppress plant defense responses in a fungal system.16In addition to detecting the activation of basal defense responses, host gene expression profiling during the tomato-Cmm interaction unraveled the involvement of ethylene in disease development.6 In fact, Cmm infection of tomato stems was found to induce expression of host genes related to ethylene biosynthesis and response (Fig. 1).6 Further analysis of ethylene-insensitive Never ripe mutants and transgenic plants with reduced ethylene synthesis indicated that ethylene is required for normal development of wilting symptoms (Fig. 2), but not for the activation of defense-related genes or bacterial colonization.6 We hypothesize that during infection ethylene synthesis and response are manipulated by Cmm virulence determinants to promote disease. Alternatively, ethylene is released as part of the host responses activated by bacterial recognition, or as a result of tissue maceration. In line with our first hypothesis, the type III effectors AvrPto and AvrPtoB from Pseudomonas syringae pv. tomato were shown to promote enhanced disease symptoms in tomato leaves, in part, by upregulating genes involved in ethylene production.17 Interestingly, expression in tomato plants of AvrPto or AvrPtoB, and infection with Cmm resulted in the upregulation of the SlACO1 gene encoding the key enzyme of ethylene biosynthesis ACC oxidase.6,17Open in a separate windowFigure 1Kinetics of ACC oxidase (ACO) gene expression in tomato plants inoculated with Cmm. Six-week-old tomato plants were infected with a Cmm suspension (108 cfu/ml) or mock-inoculated. Total RNA was extracted from stem samples harvested at the indicated day post-inoculation (dpi) and subjected to Northern blot analysis using as probe a 550 bp fragment of the SlACO1 gene, which shares high homology with other ACO family members (upper). Ethidium bromide staining shows the amount of RNA loaded in each lane (lower).Open in a separate windowFigure 2Effect of impaired ethylene sensitivity on development of wilt symptoms in tomato plants infected with Cmm. Six-week-old plants were infected with a Cmm suspension (108 cfu/ml) and examined for development of wilt symptoms during a 20-day period. The percentage of plants showing wilt symptoms was calculated in a group of at least 30 plants for the ethylene-insensitive mutant Never ripe and wild-type Pearson plants. Data are representative of two independent experiments.In conclusion, future research challenges for understanding how host responses are regulated by the plant and manipulated by a Gram-positive bacterium will be the isolation of Cmm PAMPs and their plant receptors, the identification of Cmm virulence determinants and the elucidation of their mode of action.  相似文献   

7.
8.
9.
10.
The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive Never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of ROS and a higher NO content in the apical root cells. In wild-type plants NO production seems to be ROS(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant ROS accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10−3 M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA.Key words: ethylene receptor mutant, never ripe, nitric oxide, reactive oxygen species, root apex, salicylic acid, tomatoSeveral signal molecules, including salicylic acid (SA) have been implicated in the response of plants to biotic13 and abiotic stressors.46 SA was identified as a central regulator of local defense against (hemi)biotophic pathogens inducing a hypersensitive response (HR), which is characterized by the development of lesions that restrict pathogen spread. It has also emerged as a possible signaling component involved in the activation of certain plant defense responses in non-infected part of the plants establishing the systemic acquired resistance (SAR).7The SA-induced biotic and abiotic stress adaptation most likely involves reactive oxygen species (ROS) and nitric oxide (NO) in primary signaling events that activate multiple signal transduction pathways. SA-induced ROS is required for the activation of antioxidant defense mechanisms4 and if the generation of ROS exceeds the capacity of antioxidant systems, the cells die.8 NO is another important player that is required for the induction of defense mechanisms9 or for ROS-induced cell death.10Accumulation of SA, and two other plant hormones, ethylene (ET) and jasmonic acid (JA) are intimately associated with the initiation or spread of cell death. In HR SA and ROS have been proposed to be on a positive feedback loop that amplifies signals and leads to programmed cell death (PCD). Ethylene caused increased spreading of cell death, while lesion containment can be achieved by JA through decreasing the sensitivity of the cells to ethylene and through the suppression of SA biosynthesis and signaling.8Ethylene evolution is associated with diverse physiological processes such as leaf and flower senescence, abscission of organs and fruit ripening.11 The biosynthesis of ethylene is stimulated by a variety of abiotic and biotic stress factors. Ethylene overproducing mutants (eto1 and eto3) of Arabidopsis were found to be more sensitive to O3, an abiotic stressor which induces ROS-dependent cell death.12 Cadmium-induced cell death was also accompanied by increased production of ethylene and simultaneously by H2O2 accumulation in tomato cell suspension, and based on the effect of specific inhibitors of ethylene biosynthesis and action the authors concluded that the cell death process required H2O2 production and a functional ethylene signaling pathway.13 Ethylene signaling is also required for the susceptible disease response of tomato plants infected with Xanthomonas campestris pv vesicatoria.14 It was found that the accumulation of SA and increased production of ethylene were important components of the disease symptoms of this pathogen in wild-type plants, while in Never ripe (Nr) mutants, which have a non-functional ethylene receptor, the infected plants failed to accumulate SA, produced less ethylene, and the leaves exhibited reduced necrotic lesions.It has been also shown that SA enhances NO synthesis in a dose-dependent manner.15 ROS, such as ·O2 and H2O2 as well as NO can act together in the cell death regulation and propagation.8,16 The compartment-specific (down)regulation of ROS can be controlled by NO, accordingly, ROS and NO homeostasis may be essential for the induction or for the avoidance of cell death.  相似文献   

11.
We investigated the role of nitric oxide (NO) in ABA-inhibition of stomatal opening in Vicia faba L. in different size dishes. When a large dish (9 cm diameter) was used, ABA induced NO synthesis and the NO scavenger reduced ABA-inhibition of stomatal opening. When a small dish (6 cm diameter) was used, ABA induced stomatal closure and inhibited stomatal opening. The NO scavenger was able to reduce ABA-induced stomatal closure, but unable to reverse ABA-inhibition of stomatal opening. Furthermore, NO was not synthesized in response to ABA, indicating that NO is not required for ABA-inhibition of stomatal opening in the small dish. These results indicated that an NO-dependent and an NO-independent signaling pathway participate in ABA signaling pathway. An NO-dependent pathway is the major player in ABA-induced stomatal closure. However, in ABA-inhibition of stomatal opening, an NO-dependent and an NO-independent pathway act: different signaling molecules participate in ABA-signaling cascade under different environmental condition.Key words: ABA, environmental condition, nitric oxide, stomata, Vicia faba LNitric oxide (NO) is a key signaling molecule in plants.1,2 It functions in disease resistance and programmed cell death,3,4 root development,5,6 and plant responses to various abiotic stresses.1,2,7,8 In addition, NO is required for stomatal closure in response to ABA in several species including Arabidopsis, Vicia faba, pea, tomato, barley, and wheat.911 ABA-inhibition of stomatal opening is a distinct process from ABA-induced stomatal closure.12,13 In V. faba, these two processes employ a similar signaling pathway; NO is also a second messenger molecule for ABA-inhibition of stomatal opening in a large dish.14 In this study, we examined the role of NO in ABA-inhibition of stomatal opening using different dish sizes. In a small dish, NO is not involved in ABA-inhibition of stomatal opening: the NO-independent signaling pathway is the major player in it.  相似文献   

12.
As the newest plant hormone, strigolactone research is undergoing an exciting expansion. In less than five years, roles for strigolactones have been defined in shoot branching, secondary growth, root growth and nodulation, to add to the growing understanding of their role in arbuscular mycorrhizae and parasitic weed interactions.1 Strigolactones are particularly fascinating as signaling molecules as they can act both inside the plant as an endogenous hormone and in the soil as a rhizosphere signal.2-4 Our recent research has highlighted such a dual role for strigolactones, potentially acting as both an endogenous and exogenous signal for arbuscular mycorrhizal development.5 There is also significant interest in examining strigolactones as putative regulators of responses to environmental stimuli, especially the response to nutrient availability, given the strong regulation of strigolactone production by nitrate and phosphate observed in many species.5,6 In particular, the potential for strigolactones to mediate the ecologically important response of mycorrhizal colonization to phosphate has been widely discussed. However, using a mutant approach we found that strigolactones are not essential for phosphate regulation of mycorrhizal colonization or nodulation.5 This is consistent with the relatively mild impairment of phosphate control of seedling root growth observed in Arabidopsis strigolactone mutants.7 This contrasts with the major role for strigolactones in phosphate control of shoot branching of rice and Arabidopsis8,9 and indicates that the integration of strigolactones into our understanding of nutrient response will be complex. New data presented here, along with the recent discovery of phosphate specific CLE peptides,10 indicates a potential role for PsNARK, a component of the autoregulation of nodulation pathway, in phosphate control of nodulation.  相似文献   

13.
14.
Calcium ion is considered a ubiquitous second messenger in all eukaryotic cells. Analysis of intracellular Ca2+ concentration dynamics has demonstrated its signalling role in plant cells in response to a wide array of environmental cues. The implication of Ca2+ in the early steps of the arbuscular mycorrhizal symbiosis has been frequently claimed, mainly by analogy with what firmly demonstrated in the rhizobium-legume symbiosis. We recently documented transient Ca2+ changes in plant cells challenged with diffusible molecules released by arbuscular mycorrhizal fungi. Ca2+ measurements by the recombinant aequorin method provided new insights into the molecular communications between plants and these beneficial fungi.Key words: legume symbioses, arbuscular mycorrhiza, calcium signalling, fungal signal, plant cell cultures, aequorinIn the rhizosphere plants meet a wide array of microorganisms. In favorable interactions, such as arbuscular mycorrhizal (AM) and nitrogen fixing symbioses, a dialogue is progressively established between the two interacting organisms to make the appropriate partner choice. These two-way communications rely on the interchange of signals released by both potential symbionts. After perception of the signalling molecules, a signal transduction pathway is induced, leading to the activation of the proper genetic and developmental program in both partners.Variations in intracellular free Ca2+ concentration occur as one of the initial steps in signalling pathways activated in plants when they encounter pathogens,1 fungal biocontrol agents2 and nitrogen-fixing bacteria.3 Molecules secreted by microorganisms, after binding to specific receptors, trigger in plant cells transient changes in cytosolic Ca2+ level, due to the influx of the ion from the extracellular environment and/or the release from internal Ca2+ storage compartments.4,5 Ca2+ messages delivered to plant cells are at least partly deciphered on the basis of their spatial and temporal features. The occurrence of different Ca2+ signatures guarantees the specificity of the ensuing physiological responses.In the legume-rhizobium symbiosis a definite pattern of Ca2+ oscillations has been reported to occur in response to the rhizobial signalling molecule, the Nod factor, in the nucleus and perinuclear cytoplasm of the root hair.6 The Ca2+ spike number has been recently demonstrated to regulate nodulation gene expression.7Legumes are able to engage in a dual symbiotic interaction, with rhizobia and AM fungi. Components of the Ca2+-mediated signalling pathway are shared by the two symbioses.8 In the mycorrhizal signal transduction pathway the involvement of Ca2+ has long been speculated, based on the observed similarities with symbiotic nitrogen fixation.3To evaluate the possible participation of Ca2+ in the early steps of the AM symbiosis, we have used a simplified experimental system given by plant cell suspension cultures stably expressing the bioluminescent Ca2+-sensitive reporter aequorin.9 The use of cultured cells circumvents the problem posed by multilayered organs: in aequorin-transformed seedlings, possible Ca2+ changes occurring in rhizodermal cells—the first place where the AM fungal signals are perceived and transduced—can be misrecorded due to luminescence calibration over all root cell layers, resulting in an underestimation of the Ca2+ signal in the responsive cells. An experimental design based on challenging host plant cells with the culture medium of different AM fungi (Gigaspora margarita, Glomus mosseae and intraradices) provided the first firm evidence that Ca2+ is involved as intracellular messenger during mycorrhizal signalling, at least in a pre-contact stage. Cytosolic Ca2+ changes, characterized by specific kinetic parameters, were triggered by diffusates obtained from AM resting and germinating spores,9 and extraradical mycelium.10 Cultured plant cells demonstrated to be competent to perceive the diffusible signal released by AM fungi and to decode the message in a Ca2+-dependent pathway. Based on these experiments, it seems that AM fungi announce their presence to the plant through the constitutive release of a chemical signal, even before experiencing the proximity of the plant or its AM symbiotic signals. The notion that the secreted fungal molecules herald, through Ca2+, a beneficial message which can be acknowledged only by competent receivers, is supported by: (1) the lack of defense response induction and the upregulation of some genes essential for the AM symbiosis initiation in host plant cells; (2) the unresponsiveness of cultured cells from the nonhost plant Arabidopsis thaliana.Ca2+-mediated perception of both AM fungal and rhizobial signals by plant cells unifies the signalling pathways activated in the two symbioses. However, the actual occurrence of Ca2+ spiking in AM symbiosis remains to be ascertained, due to limitations of the recombinant aequorin method, when applied to an asynchronous cell population. Contribution of internal Ca2+ stores, in particular the nucleus, to the observed Ca2+ changes will be a future research goal to be achieved through a pharmacological approach and/or targeting of Ca2+ indicators to intracellular compartments.The identification of the plant-derived mycorrhizal signal as strigolactones11 and their inducing activity on AM fungi12 have represented a major breakthrough in the AM symbiosis research field. Elucidation of the chemical nature of the AM fungal factor, which plays several effects on host plants,9,1315 is eagerly awaited.Understanding how AM fungi and rhizobia select compatible plant hosts, thus activating the appropriate symbiotic program, is another facet to be considered in the future to get a complete overview of early signaling events in legume symbioses. Analysis of Ca2+ signalling implication in the microbial partner would require the delivery of reliable and sensitive Ca2+ probes (such as aequorinor GFP-based16) for Ca2+ measurements in living microorganisms. The recombinant aequorin method has been successfully applied to monitor dynamic changes in intracellular Ca2+ levels in the bacteria Anabaena sp.,17 E. coli,18 and recently by us in rhizobial strains.19 Unfortunately, AM fungi have proved not to be amenable to stable transformation, being coenocytic, multinucleate and heterokaryotic,20,21 and only transient transformants have been obtained so far.22,23 Further development of the transformation technologies may provide in the future a valuable tool to analyse, from the fungal side, signal perception and transduction during arbuscular mycorrhiza establishment.  相似文献   

15.
The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.Key words: strigolactone, auxin, ethylene, root, root hair, lateral rootStrigolactones (SLs) are newly identified phytohormones that act as long-distance shoot-branching inhibitors (reviewed in ref. 1). In Arabidopsis, SLs have been shown to be regulators of root development and architecture, by modulating primary root elongation and lateral root formation.2,3 In addition, they were shown to have a positive effect on root-hair (RH) elongation.2 All of these effects are mediated via the MAX2 F-box.2,3In addition to SLs, two other plant hormones, auxin and ethylene, have been shown to affect root development, including lateral root formation and RH elongation.46 Since all three phytohormones (SLs, auxin and ethylene) were shown to have a positive effect on RH elongation, we examined the epistatic relations between them by examining RH length.7 Our results led to the conclusion that SLs and ethylene are in the same pathway regulating RH elongation, where ethylene may be epistatic to SLs.7 Moreover, auxin signaling was shown to be needed to some extent for the RH response to SLs: the auxin-insensitive mutant tir1-1,8 was less sensitive to SLs than the wild type under low SL concentrations.7On the one hand, ethylene has been shown to induce the auxin response,912 auxin synthesis in the root apex,11,12 and acropetal and basipetal auxin transport in the root.4,13 On the other, ethylene has been shown to be epistatic to SLs in the SL-induced RH-elongation response.7 Therefore, it might be that at least for RH elongation, SLs are in direct cross talk with ethylene, whereas the cross talk between SL and auxin pathways may converge through that of ethylene.7 The reduced response to SLs in tir1-1 may be derived from its reduced ethylene sensitivity;7,14 this is in line with the notion of the ethylene pathway being a mediator in the cross talk between the SL and auxin pathways.The suggested ethylene-mediated convergence of auxin and SLs may be extended also to lateral root formation, and may involve regulation of auxin transport. In the root, SLs have been suggested to affect auxin efflux,3,15 whereas ethylene has been shown to have a positive effect on auxin transport.4,13 Hence, it might be that in the root, the SLs'' effect on auxin flux is mediated, at least in part, via the ethylene pathway. Ethylene''s ability to increase auxin transport in roots was associated with its negative effect on lateral root formation: ethylene was suggested to enhance polar IAA transport, leading to alterations in the quantity of auxin that unloads into the tissues to drive lateral root formation.4 Under conditions of sufficient phosphate, SL''s effect was similar to that of ethylene: SLs reduced the appearance of lateral roots; this was explained by their ability to change auxin flux.3 Taken together, one possibility is that the SLs'' ability to affect auxin flux and thereby lateral root formation in the roots is mediated by induction of ethylene synthesis.To conclude, root development may be regulated by a network of auxin, SL and ethylene cross talk.7 The possibility that similar networks exist elsewhere in the SLs'' regulation of plant development, including shoot architecture, cannot be excluded.  相似文献   

16.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

17.
18.
19.
The induction and regulation of wound-healing (WH) processes in potato tubers and other vegetables are of great nutritional and economic importance. The rapid accumulation of waxes to restrict water vapor loss and formation of suberin barriers to block infection are crucial components of WH. Recently we determined the regulatory involvement of abscisic acid (ABA) and ethylene in WH. In this addendum we integrate and interpret features from this recent research with additional information on ABA and data on the association of jasmonic acid (JA) in tuber WH. Results show that wounding dramatically increased tuber ethylene production and ABA and JA content. Blockage of wound-induced ABA biosynthesis and ethylene action/biosynthesis showed that ABA is a potent regulator in reduction of water vapor loss and hastening of suberization while ethylene had no discernable effect. The collective results also imply that ethylene has no effect on ABA regulation of WH. JA content in dormant and non-dormant minitubers is very low (≤l ng gFW−1) but rapidly increases upon wounding then decreases, all before wound-induced ABA or ethylene accumulation reach their maxima. Results gathered to date do not support a role for ethylene in potato tuber WH but do implicate ABA in this process. Although JA content increases rapidly after wounding, its role in tuber WH remains speculative.Key words: wound-healing, suberizationWound-healing involves a broad range of biological processes induced and regulated by poorly defined cognate signals. The processes of suberization and associated wax accumulation are commonly considered to be synonymous with WH.1 These processes appear to be ubiquitous mechanisms of WH in plants,2 moreover they are crucial in durable wound protection.1 The importance of the signals regulating WH is underscored by the critical nature of the constituent processes.The biological processes involved in the rapid reduction in water vapor loss directly after wounding are important in preventing desiccation during healing, presumably through accumulation of waxes at the wound site.35 Also, accumulation of waxes and other aliphatic compounds has been shown to be involved in reduction of water vapor loss during maturation of fully formed native periderm.6,7 Desiccation and resulting death of cells at and near the wound surface would terminate the cellular responses necessary for induction of WH processes that protect underlying parenchyma tissues. The accumulation of suberin poly(phenolic(s)) (SPP) and suberin poly(aliphatic(s)) (SPA) during WH is important because these biopolymers provide robust barriers to bacterial and fungal infection respectively.810 The signaling mechanisms regulating the formation and deposition of these biopolymers are economically important areas of research. Until recently, regulation of these processes had largely been suggested through correlative studies. However, our recent work employed liquid chromatography mass spectrometry (LC-MS) detection coupled with inhibition of regulator action or biosynthesis to determine if the process is impaired. Subsequent reversal by exogenous regulator was then used to definitively determine if the process is restored by the signal in question.Wounding induces the biosynthesis of several hormones, most notably ABA, ethylene and JA in many tissues.11 The involvement of two important regulatory compounds, ethylene12 and ABA,13 in potato tuber WH was determined in our laboratories by quantifying their content and using depletion and blocking tactics during the period of wound response. A third regulatory compound, JA, continues to be investigated in our laboratory. Herein, we provide addenda information on these regulatory findings and combine the results to further describe the interactive involvement of these three signaling compounds in WH.  相似文献   

20.
Plants tightly control stomatal aperture in response to various environmental changes. A drought-inducible phytohormone, abscisic acid (ABA), triggers stomatal closure and ABA signaling pathway in guard cells has been well studied. Similar to ABA, methyl jasmonate (MeJA) induces stomatal closure in various plant species but MeJA signaling pathway is still far from clear. Recently we found that Arabidopsis calcium dependent protein kinase CPK6 functions as a positive regulator in guard cell MeJA signaling and provided new insights into cytosolic Ca2+-dependent MeJA signaling. Here we discuss the MeJA signaling and also signal crosstalk between MeJA and ABA pathways in guard cells.Key words: methyl jasmonate, abscisic acid, guard cell, reactive oxygen species, nitric oxide, calciumStomata, which are formed by pairs of specialized cells called guard cells, control gas exchanges and transpirational water loss. Guard cells can shrink and swell in response to various physiological stimuli, resulting in stomatal closing and opening.1,2 To optimize growth under various environmental conditions, plants have developed fine-tuned signal pathway in guard cells. Abscisic acid (ABA) is synthesized under drought stress and induces stomatal closure to reduce transpirational water loss.2 ABA signal transduction in guard cells has been widely studied. ABA induces increases of various second messengers such as cytosolic Ca2+, reactive oxygen species (ROS) and nitric oxide (NO) in guard cells. These early signal components finally evoke ion efflux through plasma membrane ion channels, resulting in reduction of guard cell turgor pressure.Jasmonates are plant hormones synthesized via the octadecanoid pathway and regulate various physiological processes in plants such as pollen maturation, tendril coiling, senescence and responses to wounding and pathogen attacks.3 Similar to ABA, jasmonates also trigger stomatal closure and the response is conserved among various plant species including Arabidopsis thaliana,4 Hordeum vulgare,5 Commelina benghalensis,6 Vicia faba,7 Nicotiana glauca,8 Paphiopedilum Supersuk9 and Paphiopedilum tonsum.9 A volatile methyl ester of jasmonic acid (JA), methy jasmonate (MeJA), has been widely used for studying jasmonate signaling pathway. To date, pharmacological and reverse genetic approaches have revealed many important signal components involved in MeJA-induced stomatal closure and suggest a signal crosstalk between MeJA and ABA in guard cells. In this review, we mainly focus on the three important second messengers, ROS, NO and cytosolic Ca2+ and discuss recent advance about MeJA signaling and signal interaction between MeJA and ABA in guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号