首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary From root exudates of three cultivars of chilli (Capsicum annuum L.) 12 amino acids and 7 sugars were detected. Methionine, d-1- phenylalanine, citrulline and d-xylose were detected only from the root exudates of resdistant cultivars. The root exudates of resistant variety inhibited spore germination of the pathogen (Fusarium oxysporum f. sp.capsici), but that of susceptible variety enhanced spore germiantion of the same. Spore germiantion of antagonistic fungi (Trichderma viride andAspergillus sydowi) was also influenced by the root exudates of resistant and susceptible varieties, but the influence was different.Spore germiantion of a number of rhizosphere fungi was studied and in general root exudate of susceptible cultivar enhanced spore germiantion of majority of fungi, but spore germination of antagonistic fungi against the pathogen was inhibited. However, root exudate of resistant cultivar stimulated spore germination of antagonistic fungi.  相似文献   

2.
Summary Root exudates from healthy and diseased lentil plants (Lens culinaris) have been investigated in relation to the wilt disease caused byFusarium oxysporum f.lentis. In all ten amino acids and five sugars have been detected. The spore germination of the pathogen in root exudates indicated that 21-days root exudate was inhibitory. Glycine and phenylalanine were detected in 21-days exudate and were found to have an inhibitory effect upon the germination of the spores of the pathogen which may partly explain the lesser disease incidence when plants of more than 3 weeks are inoculated with the pathogen.  相似文献   

3.
4.
The effect of volatile and gaseous metabolites released by germinating seeds of lentil cultivars more and less susceptible to fusariosis on the germination of spores ofMucor racemosus, Trichoderma viride, Verticillium dahliae andBotrytis cinerea was found to depend rather on the fungal genus than on the lentil cultivar. However, spores ofFusarium oxysporum reacted more sensitively during germination to the presence of exudates of both cultivars, when the more susceptible lentil displayed a stimulation, the less susceptible one an inhibition of spore germination. The greatest difference in the effect of exudates was observed in the more and less susceptible maize cultivars with respect to the germination of chlamydospores ofUstilago maydis, especially during the first hours of seed germination. Analysis of the exudates of germinating seeds showed the release of a greater amount of ethanol and methanol with acetaldehyde by the more susceptible cultivars of lentil and particularly maize.  相似文献   

5.
An integrated molecular marker map of the chickpea genome was established using 130 recombinant inbred lines from a wide cross between a cultivar resistant to fusarium wilt caused by Fusarium oxysporum Schlecht. emend. Snyd. &. Hans f. sp. ciceri (Padwick) Snyd & Hans, and an accession of Cicer reticulatum (PI 489777), the wild progenitor of chickpea. A total of 354 markers were mapped on the RILs including 118 STMSs, 96 DAFs, 70 AFLPs, 37 ISSRs, 17 RAPDs, eight isozymes, three cDNAs, two SCARs and three loci that confer resistance against different races of fusarium wilt. At a LOD-score of 4.0, 303 markers cover 2077.9 cM in eight large and eight small linkage groups at an average distance of 6.8 cM between markers. Fifty one markers (14.4%) were unlinked. A clustering of markers in central regions of linkage groups was observed. Markers of the same class, except for ISSR and RAPD markers, tended to generate subclusters. Also, genes for resistance to races 4 and 5 of fusarium wilt map to the same linkage group that includes an STMS and a SCAR marker previously shown to be linked to fusarium wilt race 1, indicating a clustering of several fusarium-wilt resistance genes around this locus. Significant deviation from the expected 1 : 1 segregation ratio was observed for 136 markers (38.4%, P<0.05). Segregation was biased towards the wild progenitor in 68% of the cases. Segregation distortion was similar for all marker types except for ISSRs that showed only 28.5% aberrant segregation. The map is the most extended genetic map of chickpea currently available. It may serve as a basis for marker-assisted selection and map-based cloning of fusarium wilt resistance genes and other agronomically important genes in future. Received: 17 November 1999 / Accepted: 4 June 2000  相似文献   

6.
Summary Ninetten aminoacids, twelve sugars, eleven organic acids and ten phenols were detected in the leaf exudates of three cultivars of chilli. The number of aminoacids, sugars, organic acids and phenols increased as the plants grew older. More aminoacids and sugars were detected in the exudate from the susceptible cultivar (Malwa). More organic acids and phenols were detected from the resistant cultivar (Simla). The leaf exudate of the resistant cultivar (Simla) inhibited spore germination of the pathogen (Alternaria solani) while that of susceptible (Malwa) stimulated spore germination. The cultivar ‘Patna’ which is moderately resistant, occupied an intermediate position. Spore germination of the isolated fungi was enhanced in leaf exudate of susceptible cultivar (Malwa), while leaf exudates of the moderately resistant (Patna) and resistant (Simla) inhibited spore germination of the majority of fungi isolated. Most of the antagonistic fungi were not isolated from the susceptible cultivar and the percentage spore germination of these fungi was less in leaf exudate of the susceptible cultivar, while leaf exudates of resistant cultivars enhanced the percentage spore germination of antagonistic fungi,viz Aspergillus flavus, A. fumigatus, A. versicolor, Penicillium citrinum, P. restrictum andTrichoderma viride.  相似文献   

7.
Tomato (Lycopersicon esculentum Mill.) seedlings, susceptible (cv. Pearson A-I Improved) and resistant (cv. Pearson Improved) to race 1 Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyd &Hans., were inoculated with Meloidogyne javanica (Trueb) Chitwood second-stage juveniles and 3 weeks later with race 1 F. oxysporum f. sp. lycopersici spores. One week after fungal inoculation, no fungus was visible in root tissue of the tomato cultivars and the giant cells were normal. Two weeks after fungal inoculation, abundant hyphae were visible in xylem tissues of Fusarium-susceptible but not of Fusarium-resistant plants. In susceptible plants, giant cell degeneration occurred, characterized by membrane and organelle disruption. In addition, where hyphae were in direct contact with the giant cell, dissolution of the giant cell wall occurred. Three weeks after fungal inoculation, fungal hyphae and spores were visible inside xylem tissues and giant cells in Fusarium-susceptible plants and in xylem tissue of the resistant plants. In susceptible and resistant plants, giant cell degeneration was apparent. Giant cell walls were completely broken down in Fusarium-susceptible tomato plants. In both cultivars infected by Fusarium, giant cell nuclei became spherical and dark inclusions occurred within the chromatin material which condensed adjacent to the fragmented nuclear membrane. No such ultrastructural changes were seen in the giant cells of control plants inoculated with nematode alone. Giant cell deterioration in both cultivars is probably caused by toxic fungal metabolites.  相似文献   

8.
The influence of culture filtrates of Fusarium oxysporum f.sp. dianthi which causes Fusarium wilt was investigated on growth and viability of carnation tissue cultures and leaf segments. Culture filtrates of avirulent race 1 of this fungus did not affect calli and leaf segments of cultivars both susceptible and resistant to Fusarium wilt. However, culture filtrates of virulent race 2 decreased viability and suppressed growth of callus of the susceptible cultivar. In contrast, callus of the resistant cultivar showed resistance to the culture filtrates. The results of these experiments may provide information on methods of selection of new wilt resistant carnation varieties.Abbreviations A270 absorbance at 270 nm - 2,4-d 2,4-dichlorophenoxyacetic acid - CF-MCD culture filtrate of 16064 grown in MCD medium - MCD medium modified Czapeck-Dox medium - MS medium basal medium of Murashige and Skoog - MW molecular weight - PD medium potato dextrose medium - TTC 2,3,5-triphenyl tetrazolium chloride  相似文献   

9.
Thirty-two Trichoderma isolates were collected from soils grown with chickpea in central highlands of Ethiopia. The eight isolates were identified by CAB-International as Trichoderma harzianum, T. koningii and T. pseudokoningii. In in vitro tests, all Trichoderma isolates showed significant (P < 0.05) differences in their colony growth and in inhibiting the colony growth of Fusarium oxysporum f.sp. ciceris, race 3. In potted experiment, four Trichoderma isolates were tested as seed treatment on three chickpea cultivars (JG-62 susceptible, Shasho moderately susceptible and JG-74 resistant) against F. oxysporum f.sp. ciceris, race 3. The result showed that T. harzianum and unidentified Trichoderma isolate T23 significantly reduced wilt severity and delayed disease onset. The degree of wilt severity and delay of disease onset varied with chickpea cultivars. Our study revealed that biological control agents such as Trichoderma can be a useful component of integrated chickpea Fusarium wilt management.  相似文献   

10.
Xylem fluids from white lupin cv. Neuland, susceptible to wilt causes by Fusarium oxysporum f. sp. lupini , promoted germination of conidia and chlamydospores of he pathogen, and the production of micro-conidia, to a greater extent than did xylem fluids from the resistant cv. Primorskij No sugars, organic acids or phenolic compounds were detected in the xylem fluids, but a number of amino acids were found, and the concentration of some differed in xylem fluids from the two cultivars; on the whole, concentrations were greater in the susceptible cv. Neuland. Synthetic amino acids were supplied to the fungus in vitro and both stimulatory and inhibitory effects (according to the compound and its concentration) were noted upon the germination of conidia and chlamydospores and on mycelial growth and the production of conidia. The role of amino acids and other compounds in the susceptibility of white lupin to wilt is discussed.  相似文献   

11.
The Solanum abutiloides plant is highly resistant to soil-borne pathogens such as Fusarium oxysporum f. sp. melongenae, Verticillium dahliae, and Ralstonia solanacearum. This species is utilized as a mating source of resistant cultivars and is also used as a rootstock. The root exudate of Solanum abutiloides was extracted from a soil system composed of charcoal and vermiculite. Anti-fungal activity was found in the extract, and an active ingredient was isolated. The chemical structure of the active compound was determined to be 3-β-acetoxysolavetivone, a new sesquiterpenoid. The anti-fungal activity of 3-β-acetoxysolavetivone examined by the inhibition of spore germination of Fusarium oxysporum was close to that of lubimin, and higher than that of solavetivone.  相似文献   

12.
Mandeel QA 《Mycopathologia》2006,161(3):173-182
In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48–96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.  相似文献   

13.
The influence of the nutrient solution pH on suppression of fusarium wilt by Pseudomonas flurescens WCS417r in carnation grown in rockwool was investigated. Experiments were conducted with carnation cultivars Lena and Pallas, susceptible and moderately resistant to fusarium wilt, respectively. WCS417r significantly reduced fusarium wilt in the susceptible cv. Lena, that was root-inoculated with Fusarium oxysporum f.sp. dianthi (Fod), at pH 7.5, but not at pH 6.5 and 5.5 This corresponded with a higher in vitro siderophore production and antagonism of Fod by WCS417r at pH 7.5 than at pH 6.5 and 5.5. Fusarium wilt in the moderately resistant cv. Pallas, however, was also significantly reduced by treatment with WCS417r at pH 5.5 This corresponded with the low influence of pH on induced resistance by WCS417r in plants of cv. Pallas that were stem-inoculated with Fod. The results indicate that the influence of pH on control of fusarium wilt of carnation by Pseudomonas fluorescens WCS417r differs between carnation cultivars that differ in their level of resistance against fusarium wilt. In susceptible cv. Lena, fusarium wilt is suppressed by antagonism by WCS417r, that is most effective at pH 7.5. In the moderately resistant cv. Pallas, fusarium wilt is suppressed by both antagonism and induced resistance by WCS417r. The latter is also effective at lower pH.  相似文献   

14.
15.

Background

Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races.

Methodology

We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy.

Findings

The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic.

Conclusions

The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms.  相似文献   

16.
Interactions between watermelon and a green fluorescent protein (GFP)‐tagged isolate of Fusarium oxysporum f.sp. niveum race 1 (Fon‐1) were studied to determine the differences in infection and colonization of watermelon roots in cultivars resistant to and susceptible to Fusarium wilt. The roots of watermelon seedlings were inoculated with a conidial suspension of the GFP‐tagged isolate, and confocal laser scanning microscopy was used to visualize colonization, infection and disease development. The initial infection stages were similar in both the resistant and susceptible cultivars, but the resistant cultivar responded differentially after the pathogen had penetrated the root. The pathogen penetrated and colonized resistant watermelon roots, but further fungal advance appeared to be halted, and the fungus did not enter the taproot, suggesting that resistance is initiated postpenetration. However, the tertiary and secondary lateral roots of resistant watermelon also were colonized, although not as extensively as susceptible roots, and the hyphae had penetrated into the central cylinder of lateral roots forming a dense hyphal mat, which was followed by a subsequent collapse of the lateral roots. The initial infection zone for both the wilt‐susceptible and wilt‐resistant watermelon roots appeared to be the epidermal cells within the root hair zone, which the fungus penetrated directly after forming appressoria. Areas where secondary roots emerged and wounded root tissue also were penetrated preferentially.  相似文献   

17.
Fusarium oxysporum f. sp. lycopersici Snyder & Hans. (FOL) is a major soil-borne pathogen and the causal agent of Fusarium wilt of tomato, resulting in significant production yield losses. Resistant cultivars have become the most effective method for controlling this fungal disease, and the most important resistance locus to F. oxysporum f. sp. lycopersici in tomato is I2, conferring resistance to race 2 of the pathogen, and widely used in breeding programs. Although this locus was cloned, a robust codominant DNA marker for the I2 locus is not available to date. The development of such a marker has been hindered by the presence of seven homologous sequences at this locus that tend to amplify, and by the absence of information about the structure of the recessive I2 locus. We performed a comparative analysis of the I2 locus nucleotide sequences of tomato genotypes resistant and susceptible to Fusarium wilt. We developed a breeder-friendly functional codominant cleaved amplified polymorphic sequence marker of I2 based on this analysis that can be used in tomato breeding programs for resistance to FOL race 2.  相似文献   

18.
Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis synergistically affected the mortality and plant growth of Ranger alfalfa, a cultivar susceptible to stem nematode and Fusarium wilt. The nematode-fungus relationship had an additive effect on mortality and plant growth of Lahontan (nematode resistant and Fusarium wilt susceptible) and of Moapa 69 (nematode susceptible and Fusarium wilt resistant). Mortality rates were 13, 16, 46, and 49% for Ranger; 4, 18, 26, and 28% for Lahontan; and 19, 10, 32, and 30% for Moapa 69 inoculated with D. dipsaci, F. oxysporum f. sp. medicaginis, and simultaneously and sequentially with D. dipsaci and F. oxysporum f. sp. medicaginis, respectively. Shoot weights as a percentage of uninoculated controls for the same treatments were 52, 84, 26, and 28%, for Ranger; 74, 86, 64, and 64% for Lahontan; and 50, 95, 44, and 39% for Moapa 69. Plant growth suppression was related to vascular bundle infection and discoloration of alfalfa root tissue. Disease severity and plant growth of alfalfa did not differ with simultaneous or sequential inoculations of the two pathogens. Fusarium oxysporum f. sp. medicaginis affected alfalfa growth but not nematode reproduction.  相似文献   

19.
Pathogenicity test ofFusarium oxysporum on ten cultivars of soybean revealed Soymax and Punjab-1 to be most resistant while JS-2 and UPSM-19 were most susceptible. Antigens were prepared from the roots of all the ten varieties of soybean and the mycelium ofF. oxysporum. Polyclonal antisera were raised against the mycelial suspension ofF. oxysporum and the root antigen of the susceptible cultivar UPSM-19. Cross reactive antigens shared by the host and the pathogen were detected first by immunodiffusion. The immunoglobulin fraction of the antiserum was purified by ammonium sulfate precipitation and DEAE-Sephadex column chromatography. The immunoglobulin fractions were used for detection of cross-reactive antigens by enzyme-linked immunosorbent assay. In enzyme-linked immunosorbent assay, antigens of susceptible cultivars showed higher absorbance values when tested against the purified anti-F. oxysporum antiserum. Antiserum produced against UPSM-19 showed cross-reactivity with the antigens of other cultivars. Indirect staining of antibodies using fluorescein isothiocyanate indicated that in cross-sections of roots of susceptible cultivar (UPSM-19) cross-reactive antigens were concentrated around xylem elements, endodermis and epidermal cells, while in the resistant variety, fluorescence was concentrated mainly around epidermal cells and distributed in the cortical tissues. CRAs were also present in microconidia, macroconidia and chlamydospores of the fungus.  相似文献   

20.
Effects of volatile and gaseous metabolites of swelling seeds of pea, bean, wheat, corn, cucumber, tomato, lentil, carrot, red pepper and lettuce on germination of spores of five genera of fungi were found to depend rather on the fungal than on the plant genus. Germination of spores ofBotrytis cinerea, Mucor racemosus andTrichoderma viride was most severely inhibited. Spores ofVerticillium dahliae were less sensitive and germination of spores ofFusarium oxysporum was inhibited only in two cases. On the other hand, exudates of pea and bean stimulated germination of spores ofFusarium oxysporum. Also spores ofTrichoderma viride germinated better in an atmosphere enriched with exuded metabolites of swelling lettuce seeds. When carbon dioxide produced by the swelling seeds was absorbed in potassium hydroxide, spores ofTrichoderma viride andVerticillium dahliae did not germinate at all, the inhibitory effects of volatile and gaseous exudates on germination of spores ofMucor racemosus were accentuated, and also the percentage of germinated spores ofFusarium oxysporum decreased. Germination of spores ofBotrytis cinerea was not influenced. Absorption of volatile and gaseous metabolites in a solution of potassium permanganate decreased in most cases their inhibitory effects, particularly inBotrytis cinerea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号