首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
甘蔗茎杆特异表达基因启动子的克隆及初步分析   总被引:1,自引:0,他引:1  
甘蔗茎秆是利用转基因方法生产重组药用蛋白或有价值的化合物的理想器官,构建能在甘蔗茎秆中高水平表达异源蛋白质的表达载体是非常有意义的。而一个高效表达的载体,启动子则是其最重要元件之一,因此,茎秆特异性启动子的获得是甘蔗作为生物反应器的前提。利用染色体步移法克隆到甘蔗己糖转运蛋白基因PST2a 5′端上游的一段长1968bp的序列( Ppst2a ),经序列测定及软件分析表明,该序列具有典型的启动子结构。此序列置换植物表达载体pCAMBIA1301上的CaMV 35S启动子,构建植物表达载体,命名为pCAMBIA1900,该启动子下游为gus基因。利用基因枪法转化甘蔗的茎和叶,对gus基因的瞬时表达进行测定,结果表明所获得的己糖转运蛋白基因启动子只在甘蔗茎中驱动gus基因瞬时表达,该启动子具有茎秆特异性。  相似文献   

2.
通过NCBI公布的同源物种设计特异性引物克隆出甘蔗己糖转运蛋白基因Sh HXT6。该基因c DNA长1 929 bp,其开放阅读框编码490个氨基酸。蛋白分子量为53.87 k D,理论等电点为9.44。该基因编码的氨基酸与玉米、狗尾草和水稻的己糖转运蛋白的一致性分别为80.85%、76.89%和72.86%等。系统进化树分析表明,Sh HXT6氨基酸与玉米HXT6蛋白一致性非常相近。Sh HXT6在未成熟组织中表达较高,尤其是未成熟叶,在根中几乎不表达。构建该基因的瞬时表达载体,通过农杆菌注射洋葱表皮的方法对Sh HXT6编码的蛋白进行亚细胞定位,结果表明,该基因编码的蛋白定位于细胞膜。  相似文献   

3.
为研究藤茶(Ampelopsis grossedentata)三萜类化合物的生物合成,采用RT-PCR方法,从藤茶叶片cDNA中扩增得到香树脂醇合成酶(amyrin synthase)基因,命名为AgAS。该基因编码区长2 250bp,编码750个氨基酸,与葡萄的同源蛋白亲缘关系最近。亚细胞定位和Southern blot结果表明,AgAS编码蛋白主要定位于细胞核与细胞膜,在藤茶基因组中存在2个拷贝。实时荧光定量PCR结果显示,AgAS基因在紫芽藤茶的根、茎和叶均有表达,其中叶片中表达最高,茎次之,根中表达量最少,且随着叶片成熟程度的增加,表达量呈先升后降趋势;而在绿芽藤茶中,AgAS基因在叶片中的表达量随着成熟程度的增加呈上升趋势,根与茎中表达量相对较少。  相似文献   

4.
己糖载体属于单糖转运蛋白家族,具有转运单糖类物质的作用,广泛存在于植物体各组织中并参与植物体的生长与发育。为了研究木薯己糖载体转运单糖的能力与对木薯生长发育的影响,本试验利用木薯全基因组数据库,通过RT-PCR方法从木薯KU50中克隆得到了木薯己糖载体基因MeSTP7,酵母异源表达与亚细胞定位实验结果表明MeSTP7具有转运葡萄糖、果糖、甘露糖和半乳糖的能力,定位在细胞膜上;qRT-PCR结果表明MeSTP7在高淀粉木薯品种KU50和低淀粉木薯品种CAS36根发育过程中的表达量均呈现逐渐降低的趋势,MeSTP7在KU50和CAS36的叶片中的表达量均为最高。本研究克隆得到了木薯己糖载体基因MeSTP7,并验证了MeSTP7的功能,为木薯己糖载体的研究提供了理论参考。  相似文献   

5.
谷甾醇糖基转移酶(sitosterol glycosyltransferase,SGT)是能与膜结合催化植物谷甾醇糖基化的一种糖基转移酶。谷甾醇–葡萄糖苷(sitosterol-glucoside,SG)能在纤维素合酶(cellulose synthase,Ces A)的作用下,作为纤维素合成的引物,以UDP-葡萄糖(UDP-Glucose)为底物合成葡聚糖链。为了研究毛白杨(Populus tomentosa)PtSGT基因的功能,根据毛果杨(Populus trichocarpa)的同源基因Ptr SGT1和Ptr SGT3设计了PCR引物,以毛白杨组培苗叶片c DNA为模板克隆了毛白杨PtSGT1和PtSGT3 CDS序列,长度分别为1 851 bp、1 911 bp,分别编码616个氨基酸、636个氨基酸。结构分析表明,毛果杨(P.trichocarpa)同源基因Ptr SGT1和Ptr SGT3均含有14个外显子和13个内含子,结构与长度差异明显,分别定位于14号和2号染色体上。氨基酸序列同源性分析和进化分析表明,毛白杨(P.tomentosa)的PtSGT1和PtSGT3均与毛果杨和胡杨(Populus euphratica)相应蛋白具有较高的同源性。Real-time PCR分析显示,PtSGT基因家族的所有基因在根、茎、叶中均有表达,总体上呈组成型表达模式;PtSGT3在各组织中表达量显著高于其他成员,在茎中表达量最高,推测PtSGT3基因在谷甾醇–葡萄糖苷合成中有着重要作用。该实验研究结果为进一步解析毛白杨纤维素合成中这2个基因的功能奠定了基础。  相似文献   

6.
蔗糖是高等植物中碳水化合物最主要的转运形式,对于植物的生长发育至关重要.植物体内蔗糖的转运主要依赖蔗糖转运蛋白,因此对于蔗糖转运蛋白基因的研究具有重要意义.拟南芥蔗糖转运蛋白AtSUC2在蔗糖装载中起主要作用,通过半定量RT-PCR测定拟南芥叶片不同发育时期和不同光强下AtSUC2基因的表达量,研究拟南芥特定发育阶段和光诱导作用下AtSUC2基因表达的影响.结果表明,在野生型拟南芥叶片中,AtSUC2基因在16 d幼叶、30 d营养期叶片、生殖期叶片中均表达,在16 d幼叶和生殖期叶片中表达强度较弱,在营养生长旺盛时(30 d叶龄)表达较高.同时,植株在暗处理12 h时,AtSUC2基因表达量降低,在强光处理12 h时,AtSUC2基因表达量与对照差异不显著,可能AtSUC2基因的表达受光诱导但与光强无关.  相似文献   

7.
水稻磷酸盐转运蛋白基因的克隆、表达及功能分析   总被引:5,自引:0,他引:5  
以水稻叶片为材料, 设计一对特异引物, 获得了编码磷酸盐转运蛋白基因OsPT6:1. 聚类和氨基酸保守位点分析指出该基因可能为水稻高亲和力磷酸盐转运蛋白编码基因. 原位杂交与RT-PCR表达结果确定此基因在根与叶片中均表达, 尤以低磷诱导下叶片的叶肉细胞表达量最高. 同源重组表明该基因的表达可以提高毕氏酵母对磷素的吸收效率, 同时其基因的导入可以使高亲和力磷酸盐转运蛋白缺失的酵母突变体的磷素吸收功能得以恢复. 以上结果表明, OsPT6:1为水稻高亲和力磷酸盐转运蛋白的编码基因.  相似文献   

8.
应用电子克隆技术,以水稻EF576477序列为探针,获得了甘蔗天冬氨酰半醛脱氢酶基因(aspartate.semialdehydedehy—drogenase,ASADH)的一条cDNA全长序列,命名为ScASADH。采用生物信息学方法,对该基因编码蛋白从氨基酸组成、理化性质、亚细胞定位、跨膜结构域、疏水性/亲水性、高级结构及功能域等方面进行预测和分析。结果表明:该基因全长1711bp,包含一个1128bp的开放阅读框,编码375个氨基酸,该基因编码蛋白定位于细胞核,为可溶性蛋白,存在信号肽,二级结构原件多为无规卷曲,含有多个保守功能域,主要功能为翻译。电子表达分析结果显示,该基因在甘蔗根尖、幼苗、花序、叶片和茎中组成型表达,其中在茎中的表达量比其他组织类型中表达量高。该基因的表达受葡萄糖杆菌和赤腐病菌的调控。  相似文献   

9.
为了解决目前甘蔗健康种苗生产成本高、生产周期过长、繁育速度慢等问题,该文以桂糖08-120脱毒健康种苗原苗为材料,在甘蔗健康种苗原苗发生分蘖后,剪下原苗主茎进行2次重复扦插移栽技术研究。结果表明:甘蔗健康种苗原苗主茎全埋种植成活率48.20%,主茎斜插种植成活率95.10%;健康种苗原苗、主茎第一次扦插移栽和主茎第二次扦插移栽的移栽成活率分别为97.67%、96.33%和96.00%,分蘖数分别为15条、14条和13条,株高分别为157.67、127.00和123.84 cm,茎径分别为25.52、25.31和25.23 mm,有效茎数分别为87 245、97 465和93 960条·hm~(-2),产量分别为49 294.5、52 126.00和49 948.50 kg·hm~(-2);主茎第一次扦插移栽和主茎第二次扦插移栽的株高低于原苗种植,但分蘖数、茎径、有效茎数和产量与原苗种植差异不显著,健康种苗原苗主茎扦插移栽与健康种苗原苗移栽的甘蔗产量效应相差不大;原苗主茎重复扦插快繁成本约为一株0.47元,显著低于原苗常规繁种成本。该研究结果为甘蔗健康种苗降低成本和加快繁育速度提供了技术支撑。  相似文献   

10.
鹅掌楸(Liriodendron chinense)为重要的珍贵用材及园林观赏树种,开展抗逆基因的研究,对于提高鹅掌楸适应性有重要意义。该文以鹅掌楸为研究对象,通过采用RT-qPCR与RACE相结合的方法克隆获得3个AOX基因,其ORF长分别为858、1 032、1 044 bp,相应编码氨基酸数为285、343、347 aa,分别命名为LcAOX1a、LcAOX1b和LcAOX2。蛋白同源性分析发现鹅掌楸AOX家族蛋白序列高度保守,尤其在C端保守性极高,且均含有"EXXH"、"EEE-Y"铁离子结合保守结构域。亚细胞定位分析结果显示LcAOX1a蛋白定位于线粒体及叶绿体之外的其他位置,LcAOX1b蛋白在叶绿体和线粒体中均有定位,LcAOX2蛋白定位于线粒体基质。采用RT-qPCR方法研究AOX基因在鹅掌楸茎、叶片、叶芽、花芽、花萼、花瓣、雄蕊、雌蕊8个不同组织中的表达模式,分析发现鹅掌楸AOX基因在花器官中表达量明显高于营养器官,LcAOX1a与LcAOX1b基因在雄蕊中表达量最高,特别是LcAOX1a基因在雄蕊中特异性表达,其表达量远远高于其他组织;LcAOX2基因在花瓣中表达量最高。该研究克隆3个鹅掌楸AOX基因并进行相关分析,为进一步研究其生物学功能奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号