首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactase phlorizin hydrolase (LPH; EC 3.2.1.62) is a membrane-bound, family 1 beta-glycosidase found on the brush border of the mammalian small intestine. LPH, purified from sheep small intestine, was capable of hydrolysing a range of flavonol and isoflavone glycosides. The catalytic efficiency (k(cat)/K(m)) for the hydrolysis of quercetin-4'-glucoside, quercetin-3-glucoside, genistein-7-glucoside and daidzein-7-glucoside was 170, 137, 77 and 14 (mM(-1) s(-1)) respectively. The majority of the activity occurred at the lactase and not phlorizin hydrolase site. The ability of LPH to deglycosylate dietary (iso)flavonoid glycosides suggests a possible role for this enzyme in the metabolism of these biologically active compounds.  相似文献   

2.
Eleven flavonol glycosides and two anthocyanins, only one of which was previously identified, were isolated from the flower petals of okra, Hibiscus esculentus L. On the basis of chromatographic, spectral, and degradative evidence, the following structural assignments were made: quercetin 4′-glucoside, quercetin 7-glucoside, quercetin 5-glucoside, quercetin 3-diglucoside, quercetin 4′-diglucoside, quercetin 3-triglucoside, quercetin 5-rhamnoglucoside, gossypetin 8-glucoside, gossypetin 8-rhamnoglucoside, gossypetin 3-glucosido-8-rhamnoglucoside, cyanidin 4′-glucoside, and cyanidin 3-glucosido-4′ glucoside. Some evidence was obtained of a pentahy-droxy, monomethoxy-flavone glycoside. The total flavonoid content in the red portion of the petal was 0.48% of fresh weight; that in the white portion was 2.51%. The two anthocyanins comprised 28.5% of the flavonoid content of the red flower but only a trace of the content of the white.  相似文献   

3.
Naringenin, the predominant flavanone in grapefruit, mainly occurs as glycosides such as naringenin-7- rhamnoglucoside or naringenin-7-glucoside. This study compared kinetics of absorption of naringenin and its glycosides in rats either after a single flavanone-containing meal or after adaptation to a diet for 14 days. Regardless of the diet, circulating metabolites were glucurono- and sulfoconjugated derivatives of naringenin. The kinetics of absorption of naringenin and naringenin-7-glucoside were similar, whereas naringenin-7-rhamnoglucoside exhibited a delay in its intestinal absorption, resulting in decreased bioavailability. After naringenin-7-glucoside feeding, no glucoside was found in the cecum. However, after feeding naringenin-7-rhamnoglucoside, some naringenin-7-rhamnoglucoside accumulated in cecum before being hydrolyzed by intestinal microflora. Adaptation to flavanone diets did not induce accumulation of plasma naringenin. Moreover, flavanone cecal content markedly decreased after adaptation, and almost no naringenin-7-rhamnoglucoside was recovered after naringenin-7-rhamnoglucoside feeding, suggesting that an adaptation of cecal microflora had occurred. Overall, these data indicate that flavanones are efficiently absorbed after feeding to rats and that their bioavailability is related to their glycosidic moiety.  相似文献   

4.
Two new flavonoid glycosides, naringenin 7-galactosyl(1 → 4)glucoside and dihydroquercetin 5- galactoside, have been characterized from stem tissue of Dillenia pentagyna. Rhamnetin 3-glucoside was also isolated.  相似文献   

5.
Leaf flavonoid glycosides of Eucalyptus camaldulensis were identified as kaempferol 3-glucoside and 3-glucuronide; quercetin 3-glucoside, 3-glucuronide, 3-rhamnoside, 3-rutinoside and 7-glucoside, apigenin 7-glucuronide and luteolin 7-glucoside and 7-glucuronide. Two chemical races were observed based on the flavonoid glycosides. These races correspond to the northern and southern populations of species growing in Australia. The Middle Eastern species examined were found to belong to the southern Australian chemical race. The major glycosides of E. occidentalis proved to be quercetin and myricetin 3-glucuronide.  相似文献   

6.
Heterogaura is a monotypic genus of the tribe Onagreae of the Onagraceae. It is endemic to south western Oregon and California. Four flavonol glycosides, kaempferol 3-O-rhamnoside, quercetin 3-O-glucoside, quercetin 3-O-rhamnoglucoside and myricetin 3-O-glucoside, were found to occur in methanolic leaf extracts of each of the populations sampled. The presence of only flavonols is consistent with flavonoid analyses from other genera of the Onagreae, including Clarkia, the closest relative of Heterogaura.  相似文献   

7.
An important aspect of the interaction of Pseudomonas syringae pv syringae with plant hosts is the perception of plant signal molecules that regulate expression of genes, such as syrB, required for synthesis of the phytotoxin, syringomycin. In this study, the leaves of sweet cherry (Prunus avium L.) were analyzed to determine the nature of the syrB-inducing activity associated with tissues of a susceptible host. Crude leaf extracts yielded high amounts of total signal activity of more than 12,000 units g-1 (fresh weight) based on activation of a syrB-lacZ fusion in strain B3AR132. The signal activity was fractionated by C18 reversed-phase high-performance liquid chromatography and found to be composed of phenolic glycosides, which were resolved in three regions of the high-performance liquid chromatography profile, and sugars, which eluted with the void volume. Two flavonol glycosides, quercetin 3-rutinosyl-4[prime]-glucoside and kaempferol 3-rutinosyl-4[prime]-glucoside, and a flavanone glucoside, dihydrowogonin 7-glucoside, were identified. The flavonoid glycosides displayed similar specific signal activities and were comparable in signal activity to arbutin, a phenyl [beta]-glucoside, giving rise to between 120 and 160 units of [beta]-galactosidase activity at 10 [mu]M. Although D-fructose exhibits intrinsic low level syrB-inducing signal activity, D-fructose enhanced by about 10-fold the signal activities of the flavonoid glycosides at low concentrations (e.g. 10 [mu]M). This demonstrates that flavonoid glycosides, which represent a new class of phenolic plant signals sensed by P. s. syringae, are in sufficient quantities in the leaves of P. avium to activate phytotoxin synthesis.  相似文献   

8.
Two new flavanone glycosides, alhagitin and alhagidin, have been isolated from the whole plant of Alhagi pseudalhagi and their structures established respectively as naringenin 5-methyl ether 4'-glucoside and hesperitin 7-galactosyl(1-->2)[rhamnosyl(1-->6)]glucoside by chemical and spectroscopic methods.  相似文献   

9.
Quercetin is a typical flavonoid ubiquitously present in fruits and vegetables, and its antioxidant effect is implied to be helpful for human health. The bioavailability of quercetin glycosides should be clarified, because dietary quercetin is mostly present as its glycoside form. Although quercetin glycosides are subject to deglycosidation by enterobacteria for the absorption at large intestine, small intestine acts as an effective absorption site for glucose-bound glycosides (quercertin glucosides). This is because small intestinal cells possess a glucoside-hydrolyzing activity and their glucose transport system is capable of participating in the glucoside absorption. A study using a cultured cell model for intestinal absorption explains that the hydrolysis of the glucosides accelerates their absorption in the small intestine. Small intestine is also recognized as the site for metabolic conversion of quercetin and other flavonoids as it possesses enzymatic activity of glucuronidation and sulfation. Modulation of the intestinal absorption and metabolism may be beneficial for regulating the biological effects of dietary quercetin.  相似文献   

10.
Leaves of 97 taxa representing all the genera at present recognized in the family Oleaceae were surveyed for flavonoids. Four flavonol glycosides were found to be common, the 3-glucmides and 3-rutinosides of quercetin and kaempferol, as were four flavone glycosides, namely the 7-glurosides arid 7-rutinosides of luteolin and apigenin. Among rarer constituents detected were luteolin 4'-glucoside, eriodictyol 7-glucoside, chrysoeriol 7-glucoside, an apigenin-di-C-glycoside and several higher glycosides of quercetin. The species and genera surveyed fell into two groups: those with flavonol glycosides alone; and those with both flavonol and flavone glycosides. The most striking correlation was with chromosome number (and subfamily division) since almost all taxa with a basic number of 11, 13 and 14 had only flavonol glycosides, whereas most taxa with x = 23 had both types of flavonoid. Evolutionary advancement in the family appears to involve the gradual replacement of flavonol by flavone glycosides. Indeed, a few tam, notably Nestegis apelala, Picconia excelsa and Tesserandra fluminense , lacked flavonol glycosides in the leaves completely. At the lower levels of classification, the distribution of flavonoids is of less interest. However, the patterns in Linociera and Chionanthus , two taxa recently made congeneric, are sufficiently different to suggest that this decision might have to be reconsidered when more is known of their chemistry. Otherwise leaf patterns generally fit in with the existing generic classification in the family.  相似文献   

11.
Ten flavonoid glycosides were isolated and identified from Artemisia monosperma: vicenin-2, lucenin-2, acacetin 7-glucoside, acacetin 7-rutinoside, the 3-glucosides and 3-rutinosides of quercetin and patuletin, and the 5-glucosides of quercetin and isorhamnetin. From Artemisia herba-alba eight flavonoid glycosides were isolated and identified: isovitexin, vicenin-2, schaftoside, isoschaftoside and the 3-glucosides and 3-rutinosides of quercetin and patuletin.  相似文献   

12.
An iridoid β-glucoside, namely plumieride coumarate glucoside, was isolated from the Plumeria obtusa (white frangipani) flower. A β-glucosidase, purified to homogeneity from P. obtusa, could hydrolyze plumieride coumarate glucoside to its corresponding β-O-coumarylplumieride. Plumeria β-glucosidase is a monomeric glycoprotein with a molecular weight of 60.6 kDa and an isoelectric point of 4.90. The purified β-glucosidase had an optimum pH of 5.5 for p-nitrophenol (pNP)-β-D-glucoside and for its natural substrate. The Km values for pNP-β-D-glucoside and Plumeria β-glucoside were 5.04±0.36 mM and 1.02±0.06 mM, respectively. The enzyme had higher hydrolytic activity towards pNP-β-D-fucoside than pNP-β-D-glucoside. No activity was found for other pNP-glycosides. Interestingly, the enzyme showed a high specificity for the glucosyl group attached to the C-7" position of the coumaryl moiety of plumieride coumarate glucoside. The enzyme showed poor hydrolysis of 4-methylumbelliferyl-β-glucoside and esculin, and did not hydrolyze alkyl-β-glucosides, glucobioses, cyanogenic-β-glucosides, steroid β-glucosides, nor other iridoid β-glucosides. In conclusion, the Plumeria β-glucosidase shows high specificity for its natural substrate, plumieride coumarate glucoside.  相似文献   

13.
Identification of the phenolic constituents in flowers of nine palm species has revealed that charged C-glycosylflavones and caffeylshikimic acid are characteristically present. Flavonol glycosides are also common; the 3-glucosides, 3-rutinosides and 3,4′-diglucosides of quercetin and isorhamnetin and the 7-glucoside and 3,7-diglucoside of quercetin are all variously present. Tricin 7-glucoside, luteolin 7-rutinoside and several unchanged C-glycosylflavones were also detected. Male flowers of Phoenix canariensis differ from female flowers in having flavonol glycosides. As expected, in most species studied, flavonoid patterns in the flowers vary considerably from those found in the leaves.  相似文献   

14.
Flavonoids are antioxidants present in plant foods. They occur mainly as glycosides, i.e. linked with various sugars. It is uncertain to what extent dietary flavonoid glycosides are absorbed from the gut. We investigated how the nature of the sugar group affected absorption of one major flavonoid, quercetin. Quercetin linked with glucose, i.e. quercetin glucoside and quercetin linked with rutinose, i.e. quercetin rutinoside, both occur widely in foods. When we fed these compounds to nine volunteers, the peak concentration of quercetin (Cmax) in plasma was 20 times higher and was reached (Tmax) more than ten times faster after intake of the glucoside (Cmax = 3.5+/-0.6 microM (mean +/- SE); Tmax < 0.5 h) than after the rutinoside (Cmax = 0.18+/-0.04 microM; Tmax = 6.0+/-1.2 h). The bioavailability of the rutinoside was only 20% of that of the glucoside. We suggest that quercetin glucoside is actively absorbed from the small intestine, whereas quercetin rutinoside is absorbed from the colon after deglycosylation. Absorption of other food components might also be enhanced by attachment of a glucose group.  相似文献   

15.
Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. The antioxidant properties of the conjugates found in vivo and their binding to serum albumin are unknown, but essential for understanding possible actions of quercetin in vivo. We, therefore, tested the most abundant human plasma quercetin conjugates, quercetin-3-glucuronide, quercetin-3'-sulfate and isorhamnetin-3-glucuronide, for their ability to inhibit Cu(II)-induced oxidation of human low density lipoprotein and to bind to human albumin, in comparison to free flavonoids and other quercetin conjugates. LDL oxidation lag time was increased by up to four times by low (<2 microM) concentrations of quercetin-3-glucuronide, but was unaffected by equivalent concentrations of quercetin-3'-sulfate and isorhamnetin-3-glucuronide. In general, the compounds under study prolonged the lag time of copper-induced LDL oxidation in the order: quercetin-7-glucuronide > quercetin > quercetin-3-glucuronide = quercetin-3-glucoside > catechin > quercetin-4'-glucuronide > isorhamnetin-3-glucuronide > quercetin-3'-sulfate. Thus the proposed products of small intestine metabolism (quercetin-7-glucuronide, quercetin-3-glucuronide) are more efficient antioxidants than subsequent liver metabolites (isorhamnetin-3-glucuronide, quercetin-3'-sulfate). Albumin-bound conjugates retained their property of protecting LDL from oxidation, although the order of efficacy was altered (quercetin-3'-sulfate > quercetin-7-glucuronide > quercetin-3-glucuronide > quercetin-4'-glucuronide = isorahmnetin-3-glucuronide). Kq values (concentration required to achieve 50% quenching) for albumin binding, as assessed by fluorescence quenching of Trp214, were as follows: quercetin-3'-sulfate (approximately 4 microM)= quercetin > or = quercetin-7-glucuronide > quercetin-3-glucuronide = quercetin-3-glucoside > isorhamnetin-3-glucuronide > quercetin-4'-glucuronide (approximately 20 microM). The data show that flavonoid intestinal and hepatic metabolism have profound effects on ability to inhibit LDL oxidation and a lesser but significant effect on binding to serum albumin.  相似文献   

16.
In order to evaluate the positional specificity for a glucoside group in the hydrolysis of flavonoid glucosides in the rat small intestine, β-glucosidase activity was measured with the quercetin monoglucosides, quercetin-3-O-β-D-glucopyranoside (Q3G), quercetin-4′-O-β-D-glucopyranoside (Q4′G) and quercetin-7-O-β-D-glucopyranoside (Q7G), as well as with quercetin-3-O-rutinoside (rutin) and p-nitrophenyl-β-D-glucopyranoside (NPG) by using the HPLC technique. Enzymes were prepared from rat small intestinal mucosa of the duodenum, jejunum and ileum, among which the enzyme activity of the jejunum was highest for all the glycosides tested. Q4′G was the richest substrate for a β-glucosidase solution among these glycosides, while rutin and NPG were both poor substrates. This suggests that dietary flavonoid glucosides are primarily hydrolyzed and liberated aglycones in the jejunum.  相似文献   

17.
The flavonoids of an additional eight species of Clibadium have been determined. The compounds are derivatives of kaempferol, quercetin and quercetagetin. O-Methylated quercetagetin derivatives were found in several taxa with the possibility that 6-methoxykaempferol may also exist in one collection. Kaempferol and quercetin exist as 3-O-glucosides, galactosides, rhamnosides, rutinosides and diglucosides although not all glycosides occur in each taxon. Quercetagetin derivatives occur as 7-O-glucosides. Observations on these newly investigated species confirm previous work in the genus that three types of flavonoid profiles exist: (1) kaempferol and quercetin 3-glycosides; (2) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside; and (3) kaempferol and quercetin 3-glycosides plus quercetagetin 7-glucoside and O-methylated derivatives of quercetagetin.  相似文献   

18.
Novel flavonoids were formed in young leaves of apple (Malusxdomestica) after treatment with the dioxygenase inhibitor prohexadione-Ca, which is known to reduce the incidence and severity of fire blight caused by Erwinia amylovora and other plant diseases. The compounds were isolated and identified as luteoliflavan, luteoliflavan 5-glucoside, eriodictyol 7-glucoside and 6"-O-trans-p-coumaroyleriodictyol 3'-glucoside. These flavonoids represent a novel biosynthetic pathway in apple leading to the formation of 3-deoxyflavans. Concomitantly, the content of regularly occurring phenylpropanoids is also influenced by prohexadione-Ca with increasing amounts of hydroxycinnamic acids and decreasing flavan-3-ols and flavonols. The altered flavonoid metabolism may be related to the lowered pathogen incidence though the isolated novel flavonoids do not exhibit antibacterial activity.  相似文献   

19.
Two rare anthocyanins, cyanidin 3-(6-malonylglucoside)-7,3′-di(6-sinapylglucoside) and the demalonyl derivative, were characterised as the purple floral pigments of Dendrobium cv. ‘Pompadour’. Nine known flavonol glycosides were also identified, including the 3-rutinoside-7-glucosides of kaempferol and quercetin. One new glycoside was detected: the ferulyl ester of quercetin 7-rutinoside-7-glucoside. These flavonoid patterns are typical for plants in the family Orchidaceae.  相似文献   

20.
We examined the foliar flavonoids of Chrysanthemum arcticum subsp. arcticum and yezoense, and related Chrysanthemum species. Five flavonoid glycosides (luteolin 7-O-glucoside and 7-O-glucuronides of luteolin, apigenin, eriodictyol and naringenin) were isolated from these taxa. Luteolin 7-O-xylosylglucoside, luteolin, apigenin and quercetin 3-methyl ether were found in subsp. yezoense as very minor compounds that were not recognised by high-performance liquid chromatography/photodiode array (HPLC/PDA). The related species C. yezoense contained acacetin 7-O-rutinoside and some methoxylated flavone aglycones as major compounds. Thus, C. arcticum was distinguished from C. yezoense according to their flavonoid profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号