首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is an important signaling component of ABA-induced stomatal closure. However, only fragmentary data are available about NO effect on the inhibition of stomatal opening. Here, we present results supporting that, in Vicia faba guard cells, there is a critical Ca2+-dependent NO increase required for the ABA-mediated inhibition of stomatal opening. Light-induced stomatal opening was inhibited by exogenous NO in V. faba epidermal strips. Furthermore, ABA-mediated inhibition of stomatal opening was blocked by the specific NO scavenger cPTIO, supporting the involvement of endogenous NO in this process. Since the raise in Ca2+ concentration is a pre-requisite in ABA-mediated inhibition of stomatal opening, it was interesting to establish how does Ca2+, NO and ABA interact in the inhibition of light-induced stomatal opening. The permeable Ca2+ specific buffer BAPTA-AM blocked both ABA- and Ca2+- but not NO-mediated inhibition of stomatal opening. The NO synthase (NOS) specific inhibitor L-NAME prevented Ca2+-mediated inhibition of stomatal opening, indicating that a NOS-like activity was required for Ca2+ signaling. Furthermore, experiments using the NO specific fluorescent probe DAF-2DA indicated that Ca2+ induces an increase of endogenous NO. These results indicate that, in addition to the roles in ABA-triggered stomatal closure, both NO and Ca2+ are active components of signaling events acting in ABA inhibition of light-induced stomatal opening. Results also support that Ca2+ induces the NO production through the activation of a NOS-like activity.  相似文献   

2.
Recent evidence suggests that nitric oxide (NO) acts as an intermediate of ABA signal transduction for stomatal closure. However, NO's effect on stomatal opening is poorly understood even though both opening and closing activities determine stomatal aperture. Here we show that NO inhibits stomatal opening specific to blue light, thereby stimulating stomatal closure. NO inhibited blue light-specific stomatal opening but not red light-induced opening. NO inhibited both blue light-induced H(+) pumping and H(+)-ATPase phosphorylation. The NO scavenger 2-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) restored all these inhibitory effects. ABA and hydrogen peroxide (H(2)O(2)) inhibited all of these blue light-specific responses in a manner similar to NO. c-PTIO partially restored the ABA-induced inhibition of all of these opening responses but did not restore inhibition of the responses by H(2)O(2). ABA, H(2)O(2) and NO had slight inhibitory effects on the phosphorylation of phototropins, which are blue light receptors in guard cells. NO inhibited neither fusicoccin-induced H(+) pumping in guard cells nor H(+) transport by H(+)-ATPase in the isolated membranes. From these results, we conclude that both NO and H(2)O(2) inhibit blue light-induced activation of H(+)-ATPase by inhibiting the component(s) between phototropins and H(+)-ATPase in guard cells and stimulate stomatal closure by ABA.  相似文献   

3.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are key signalling molecules produced in response to various stimuli and involved in a diverse range of plant signal transduction processes. Nitric oxide and H(2)O(2) have been identified as essential components of the complex signalling network inducing stomatal closure in response to the phytohormone abscisic acid (ABA). A close inter-relationship exists between ABA and the spatial and temporal production and action of both NO and H(2)O(2) in guard cells. This study shows that, in Arabidopsis thaliana guard cells, ABA-mediated NO generation is in fact dependent on ABA-induced H(2)O(2) production. Stomatal closure induced by H(2)O(2) is inhibited by the removal of NO with NO scavenger, and both ABA and H(2)O(2) stimulate guard cell NO synthesis. Conversely, NO-induced stomatal closure does not require H(2)O(2) synthesis nor does NO treatment induce H(2)O(2) production in guard cells. Tungstate inhibition of the NO-generating enzyme nitrate reductase (NR) attenuates NO production in response to nitrite in vitro and in response to H(2)O(2) and ABA in vivo. Genetic data demonstrate that NR is the major source of NO in guard cells in response to ABA-mediated H(2)O(2) synthesis. In the NR double mutant nia1, nia2 both ABA and H(2)O(2) fail to induce NO production or stomatal closure, but in the nitric oxide synthase deficient Atnos1 mutant, responses to H(2)O(2) are not impaired. Importantly, we show that in the NADPH oxidase deficient double mutant atrbohD/F, NO synthesis and stomatal closure to ABA are severely reduced, indicating that endogenous H(2)O(2) production induced by ABA is required for NO synthesis. In summary, our physiological and genetic data demonstrate a strong inter-relationship between ABA, endogenous H(2)O(2) and NO-induced stomatal closure.  相似文献   

4.
Zhang A  Jiang M  Zhang J  Ding H  Xu S  Hu X  Tan M 《The New phytologist》2007,175(1):36-50
* The role of nitric oxide (NO) and the relationship between NO, hydrogen peroxide (H(2)O(2)) and mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Both ABA and H(2)O(2) induced increases in the generation of NO in mesophyll cells of maize leaves, and H(2)O(2) was required for the ABA-induced generation of NO. Pretreatment with NO scavenger and nitric oxide synthase (NOS) inhibitor substantially reduced the ABA-induced production of NO, and partly blocked the activation of a 46 kDa MAPK and the expression and the activities of several antioxidant enzymes induced by ABA. Treatment with the NO donor sodium nitroprusside (SNP) also induced the activation of the MAPK, and enhanced the antioxidant defense systems. * Conversely, SNP treatment did not induce the production of H(2)O(2), and pretreatments with NO scavenger and NOS inhibitor did not affect ABA-induced H(2)O(2) production. * Our results suggest that ABA-induced H(2)O(2) production mediates NO generation, which, in turn, activates MAPK and results in the upregulation in the expression and the activities of antioxidant enzymes in ABA signaling.  相似文献   

5.
ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells   总被引:19,自引:0,他引:19  
Increased synthesis and redistribution of the phytohormone abscisic acid (ABA) in response to water deficit stress initiates an intricate network of signalling pathways in guard cells leading to stomatal closure. Despite the large number of ABA signalling intermediates that are known in guard cells, new discoveries are still being made. Recently, the reactive oxygen species hydrogen peroxide (H2O2) and the reactive nitrogen species nitric oxide (NO) have been identified as key molecules regulating ABA-induced stomatal closure in various species. As with many other physiological responses in which H2O2 and NO are involved, stomatal closure in response to ABA also appears to require the tandem synthesis and action of both these signalling molecules. Recent pharmacological and genetic data have identified NADPH oxidase as a source of H2O2, whilst nitrate reductase has been identified as a source of NO in Arabidopsis guard cells. Some signalling components positioned downstream of H2O2 and NO are calcium, protein kinases and cyclic GMP. However, the exact interaction between the various signalling components in response to H2O2 and NO in guard cells remains to be established.  相似文献   

6.
A comprehensive study which was undertaken on the effect of three polyamines (PAs) on stomatal closure was examined in relation to nitric oxide (NO) and reactive oxygen species (ROS) levels in guard cells of Arabidopsis thaliana. Three PAs—putrescine (Put), spermidine (Spd), and spermine (Spm)—induced stomatal closure, while increasing the levels of NO as well as ROS in guard cells. The roles of NO and ROS were confirmed by the reversal of closure by cPTIO (NO scavenger) and catalase (ROS scavenger). The presence of L-NAME (NOS-like enzyme inhibitor) reversed PA-induced stomatal closure, suggesting that NOS-like enzyme played a significant role in NO production during stomatal closure. The reversal of stomatal closure by diphenylene iodonium (DPI, NADPH oxidase inhibitor) or 2-bromoethylamine (BEA, copper amine oxidase inhibitor) or 1,12 diaminododecane (DADD, polyamine oxidase inhibitor) was partial. In contrast, the presence of DPI along with BEA/DADD reversed completely the closure by PAs. We conclude that both NO and ROS are essential signaling components during Put-, Spd-, and Spm-induced stomatal closure. The PA-induced ROS production is mediated by both NADPH oxidase and amine oxidase. The rise in ROS appears to be upstream of NO. Ours is the first detailed study on the role of NO and its dependence on ROS during stomatal closure by three major PAs.  相似文献   

7.
The sources of nitric oxide (NO) production in response to abscisic acid (ABA) and the role of NO in ABA-induced hydrogen peroxide (H(2)O(2)) accumulation and subcellular antioxidant defense in leaves of maize (Zea mays L.) plants were investigated. ABA induced increases in generation of NO and activity of nitric oxide synthase (NOS) in maize leaves. Such increases were blocked by pretreatment with each of the two NOS inhibitors. Pretreatments with a NO scavenger or NR inhibitors inhibited ABA-induced increase in production of NO, but did not affect the ABA-induced increases in activity of NOS, indicating that ABA-induced NO production originated from sources of NOS and NR. ABA- and H(2)O(2)-induced increases in expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by pretreatments with the NO scavenger, inhibitors of NOS and NR, indicating that NO is involved in the ABA- and H(2)O(2)-induced subcellular antioxidant defense reactions. On the other hand, NO donor sodium nitroprusside (SNP) reduced accumulation of H(2)O(2) induced by ABA, and c-PTIO reversed the effect of SNP in decreasing the accumulation of H(2)O(2). SNP induced increases in activities of subcellular antioxidant enzymes, and the increases were substantially prevented from occurring by the pretreatment with c-PTIO. These results suggest that ABA induces production of H(2)O(2) and NO, which can up-regulate activities of the subcellular antioxidant enzymes, to prevent overproduction of H(2)O(2) in maize plants. There is a negative feedback loop between NO and H(2)O(2) in ABA signal transduction in maize plants.  相似文献   

8.
为探讨NO对He-Ne激光和增强UV-B辐射小麦(Triticum aestivuml)气孔运动的作用机理,采用低剂量(5 mW.mm-2)He-Ne激光和增强(10.08 kJ.m-2.d-1)UV-B辐射并结合药理学实验和激光共聚焦显微技术,对ML7113小麦的叶片及表皮条进行不同的处理,结果显示:(1)UV-B辐射既可诱导小麦叶片气孔关闭,又能够明显增加气孔保卫细胞和叶片的NO水平,且NO清除剂明显抑制了UV-B辐射诱导的小麦叶片气孔关闭,同时气孔保卫细胞和叶片内的NO含量明显减少。(2)一氧化氮合酶(NOS)抑制剂L-NAME对经UV-B辐射诱导的小麦幼苗气孔开度及保卫细胞和叶片内NO含量的抑制程度明显大于硝酸还原酶(NR)抑制剂NaN3对其的抑制程度,说明一氧化氮合酶(NOS)合成途径是小麦叶片经UV-B辐射后NO的主要产生途径。(3)就气孔开度而言,L〉CK〉BL〉B。就小麦叶片及保卫细胞内NO含量而言,B〉BL〉CK〉L。就硝酸还原酶(NR)和一氧化氮合酶(NOS)的活性而言,B组NR活性最低,NOS活性最高,L组NR活性最高,NOS活性最低。表明经He-Ne激光和增强UV-B辐射诱导的小麦气孔开度的变化确实与保卫细胞及叶片中NO含量的多少有关,气孔开度的减小及增大对应于NO含量的增多或减少,同时进一步证实了小麦叶片经He-Ne激光单独辐照后,NO的主要合成途径也来源于NOS途径。  相似文献   

9.
The role of nitric oxide (NO) during bicarbonate-induced stomatal closure was studied in the abaxial epidermis of Pisum sativum . A few experiments were done with 10 μ M ABA, for comparison. The presence of 2 m M sodium bicarbonate or 10 μ M ABA induced an increase of NO in guard cells. Elevation of NO by sodium nitroprusside induced stomatal closure and enhanced further the closure by bicarbonate. The bicarbonate induced increase in NO of guard cells, or stomatal closure was prevented partially by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide, an NO scavenger and N -nitro- l -Arg-methyl ester, an inhibitor of NO synthase (NOS). These results suggested that guard cells generated NO on exposure to bicarbonate and that NOS was involved at least partially in such NO production. Time course experiments revealed that on exposure to bicarbonate or ABA, the rise in guard cell NO production peaked within 10 min. Experiments using pharmacological compounds like wortmannin/LY294002 (phosphatidylinositol 3 kinase inhibitors), 1 H -(1,2,4)-oxadiazole-[4,3 a ]quinoxalin-1-one (guanylyl cyclase inhibitor), nicotinamide (cyclic adenosine diphosphate ribose antagonist), guanosine 5'-O-(2-thiodiphosphate) (G-protein antagonist) suggested a role of phosphatidylinositol 3-phosphate or G-proteins during bicarbonate-induced stomatal closure.  相似文献   

10.
Recently, in animals, carbon monoxide (CO), like nitric oxide (NO), was implicated as another important physiological messenger or bioactive molecule. Previous researches indicate that heme oxygenase (HO)-1 (EC 1.14.99.3) catalyzes the oxidative conversion of heme to CO and biliverdin IXa (BV) with the concomitant release of iron. However, little is known about the physiological roles of CO in plant, especially in stomatal movement of guard cells. In the present paper, the regulatory role of CO during stomatal movement in Vicia faba was surveyed. Results indicated that, like sodium nitroprusside (SNP), CO donor hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proved by the addition of gaseous CO aqueous solution with different concentrations, showing for the first time that CO and NO exhibit similar regulation role in the stomatal movement. Moreover, our data showed that 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)/NG-nitro- l -arginine-methyl ester ( l -NAME) not only reversed stomatal closure by CO, but also suppressed the NO fluorescence induced by CO, implying that CO-induced stomatal closure probably involves NO/nitric oxide synthase (NOS) signal system. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO-specific synthetic inhibitor zinc protoporphyrin IX (ZnPPIX), NO scavenger cPTIO and NOS inhibitor l -NAME reversed the darkness-induced stomatal closure and NO fluorescence. These results show that, maybe like NO, the levels of CO in guard cells of V.   faba is higher in dark than that in light, HO-1 and NOS are the enzyme systems responsible for generating endogenous CO and NO in darkness, respectively, and that CO being from HO-1 mediates darkness-induced NO synthesis in guard cells' stomatal closure of V.   faba .  相似文献   

11.
Guard-cell signalling for hydrogen peroxide and abscisic acid   总被引:5,自引:0,他引:5  
Wang P  Song CP 《The New phytologist》2008,178(4):703-718
Guard cells can integrate and process multiple complex signals from the environment and respond by opening and closing stomata in order to adapt to the environmental signal. Over the past several years, considerable research progress has been made in our understanding of the role of reactive oxygen species (ROS) as essential signal molecules that mediate abscisic acid (ABA)-induced stomatal closure. In this review, we discuss hydrogen peroxide (H2O2) generation and signalling, H2O2-induced gene expression, crosstalk and the specificity between ABA and H2O2 signalling, and the cellular mechanism for ROS sensing in guard cells. This review focuses especially on the points of connection between ABA and H2O2 signalling in guard cells. The fundamental progress in understanding the role of ABA and ROS in guard cells will continue to provide a rational basis for biotechnological improvements in the development of drought-tolerant crop plants with improved water-use efficiency.  相似文献   

12.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

13.
本文研究了壳寡糖(COS)、一氧化氮(NO)和植物激素对烟草气孔运动的作用及其相互关系,结果表明,COS、NO、脱落酸(ABA)能诱导烟草气孔开度减小;ABA合成抑制剂钨酸钠(Na2WO4)和NO合成酶抑制剂L-NAME具有清除COS、ABA或NO诱导烟草气孔开度减小的作用。说明COS通过诱导ABA和NO产生,进而诱导烟草气孔开度减小,而且ABA和NO之间有相互作用。另外,细胞分裂素和生长素能够诱导烟草气孔开度增大,也能够逆转COS诱导的气孔开度减小。  相似文献   

14.
一氧化氮在乙烯诱导蚕豆气孔关闭中的作用   总被引:3,自引:0,他引:3  
以蚕豆为材料研究了一氧化氮(nitric oxide,NO)和乙烯对气孔运动的影响。结果表明,10μmol/L的NO供体硝普钠(sodium nitroprusside,SNP)以及0.04%的乙烯能明显诱导蚕豆气孔关闭,并且二者共同处理后,能够增强其促进气孔关闭的作用。乙烯合成抑制剂AVG可以减弱NO诱导气孔关闭的程度,NO清除剂c-PTIO和NR抑制剂NaN3也可减弱乙烯诱导气孔关闭的程度,而一氧化氮合酶(nitric oxide synthase,NOS)抑制剂L-NAME对乙烯诱导气孔关闭的作用不明显。推测,在调控蚕豆气孔关闭过程中,NO可能主要通过NR途径参与乙烯调控气孔关闭过程。  相似文献   

15.
Sang J  Zhang A  Lin F  Tan M  Jiang M 《Cell research》2008,18(5):577-588
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.  相似文献   

16.
Nitric oxide (NO) and hydrogen peroxide (H2O2) function as signalling molecules in plants under abiotic and biotic stresses. Calluses from Populus euphratica, which show salt tolerance, were used to study the interaction of NO and H2O2 in plant adaptation to salt resistance. The nitric oxide synthase (NOS) activity was identified in the calluses, and this activity was induced under 150 mM NaCl treatment. Under 150 mM NaCl treatment, the sodium (Na) percentage decreased, but the potassium (K) percentage and the K/Na ratio increased in P. euphratica calluses. Application of glucose/glucose oxidase (G/GO, a H2O2 donor) and sodium nitroprusside (SNP, a NO donor) revealed that both H2O2 and NO resulted in increased K/Na ratio in a concentration-dependent manner. Diphenylene iodonium (DPI, an NADPH oxidase inhibitor) counteracted H2O2 and NO effect by increasing the Na percentage, decreasing the K percentage and K/Na ratio. NG-monomethyl-L-Arg monoacetate (NMMA, an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (PTIO, a specific NO scavenger) only reversed NO effect, but did not block H2O2 effect. The increased activity of plasma membrane (PM) H+ -ATPase caused by salt stress was reversed by treatment with DPI and NMMA. Exogenous H2O2 increased the activity of PM H+ -ATPase, but the effect could not be diminished by NMMA and PTIO. The NO-induced increase of PM H+ -ATPase can be reversed by NMMA and PTIO, but not by DPI. Western blot analysis demonstrated that NO and H2O2 stimulated the expression of PM H+ -ATPase in P. euphratica calluses. These results indicate that NO and H2O2 served as intermediate molecules in inducing salt resistance in the calluses from P. euphratica under slat stress by increasing the K/Na ratio, which was dependent on the increased PM H+ -ATPase activity.  相似文献   

17.
An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.  相似文献   

18.
? The drought hormone abscisic acid (ABA) is widely known to produce reductions in stomatal aperture in guard cells. The second messenger cyclic guanosine 3', 5'-monophosphate (cGMP) is thought to form part of the signalling pathway by which ABA induces stomatal closure. ? We have examined the signalling events during cGMP-dependent ABA-induced stomatal closure in wild-type Arabidopsis plants and plants of the ABA-insensitive Arabidopsis mutant abi1-1. ? We show that cGMP acts downstream of hydrogen peroxide (H(2) O(2) ) and nitric oxide (NO) in the signalling pathway by which ABA induces stomatal closure. H(2) O(2) - and NO-induced increases in the cytosolic free calcium concentration ([Ca(2+) ](cyt) ) were cGMP-dependent, positioning cGMP upstream of [Ca(2+) ](cyt) , and involved the action of the type 2C protein phosphatase ABI1. Increases in cGMP were mediated through the stimulation of guanylyl cyclase by H(2) O(2) and NO. We identify nucleoside diphosphate kinase as a new cGMP target protein in Arabidopsis. ? This study positions cGMP downstream of ABA-induced changes in H(2) O(2) and NO, and upstream of increases in [Ca(2+) ](cyt) in the signalling pathway leading to stomatal closure.  相似文献   

19.
Selenium (Se) is suggested as an emerging pollutant in agricultural environment because of the increasing anthropogenic release of Se, which in turn results in phytotoxicity. The most common consequence of Se-induced toxicity in plants is oxidative injury, but how Se induces reactive oxygen species (ROS) burst remains unclear. In this work, histofluorescent staining was applied to monitor the dynamics of ROS and nitric oxide (NO) in the root of Brassica rapa under Se(IV) stress. Se(IV)-induced faster accumulation of NO than ROS. Both NO and ROS accumulation were positively correlated with Se(IV)-induced inhibition of root growth. The NO accumulation was nitrate reductase (NR)- and nitric oxide synthase (NOS)-dependent while ROS accumulation was NADPH oxidase-dependent. The removal of NO by NR inhibitor, NOS inhibitor, and NO scavenger could alleviate Se(IV)-induced expression of Br_Rbohs coding for NADPH oxidase and the following ROS accumulation in roots, which further resulted in the amelioration of Se(IV)-induced oxidative injury and growth inhibition. Thus, we proposed that the endogenous NO played a toxic role in B. rapa under Se(IV) stress by triggering ROS burst. Such findings can be used to evaluate the toxic effects of Se contamination on crop plants.  相似文献   

20.
Methyl jasmonate (MeJA) elicits stomatal closing similar to abscisic acid (ABA), but whether the two compounds use similar or different signaling mechanisms in guard cells remains to be clarified. We investigated the effects of MeJA and ABA on second messenger production and ion channel activation in guard cells of wild-type Arabidopsis (Arabidopsis thaliana) and MeJA-insensitive coronatine-insensitive 1 (coi1) mutants. The coi1 mutation impaired MeJA-induced stomatal closing but not ABA-induced stomatal closing. MeJA as well as ABA induced production of reactive oxygen species (ROS) and nitric oxide (NO) in wild-type guard cells, whereas MeJA did not induce production of ROS and NO in coi1 guard cells. The experiments using an inhibitor and scavengers demonstrated that both ROS and NO are involved in MeJA-induced stomatal closing as well as ABA-induced stomatal closing. Not only ABA but also MeJA activated slow anion channels and Ca(2+) permeable cation channels in the plasma membrane of wild-type guard cell protoplasts. However, in coi1 guard cell protoplasts, MeJA did not elicit either slow anion currents or Ca(2+) permeable cation currents, but ABA activated both types of ion channels. Furthermore, to elucidate signaling interaction between ABA and MeJA in guard cells, we examined MeJA signaling in ABA-insensitive mutant ABA-insensitive 2 (abi2-1), whose ABA signal transduction cascade has some disruption downstream of ROS production and NO production. MeJA also did not induce stomatal closing but stimulated production of ROS and NO in abi2-1. These results suggest that MeJA triggers stomatal closing via a receptor distinct from the ABA receptor and that the coi1 mutation disrupts MeJA signaling upstream of the blanch point of ABA signaling and MeJA signaling in Arabidopsis guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号