首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
Parsing a mental operation into components, characterizing the parallel or serial nature of this flow, and understanding what each process ultimately contributes to response time are fundamental questions in cognitive neuroscience. Here we show how a simple theoretical model leads to an extended set of predictions concerning the distribution of response time and its alteration by simultaneous performance of another task. The model provides a synthesis of psychological refractory period and random-walk models of response time. It merely assumes that a task consists of three consecutive stages—perception, decision based on noisy integration of evidence, and response—and that the perceptual and motor stages can operate simultaneously with stages of another task, while the central decision process constitutes a bottleneck. We designed a number-comparison task that provided a thorough test of the model by allowing independent variations in number notation, numerical distance, response complexity, and temporal asynchrony relative to an interfering probe task of tone discrimination. The results revealed a parsing of the comparison task in which each variable affects only one stage. Numerical distance affects the integration process, which is the only step that cannot proceed in parallel and has a major contribution to response time variability. The other stages, mapping the numeral to an internal quantity and executing the motor response, can be carried out in parallel with another task. Changing the duration of these processes has no significant effect on the variance.  相似文献   

2.
Parsing a mental operation into components, characterizing the parallel or serial nature of this flow, and understanding what each process ultimately contributes to response time are fundamental questions in cognitive neuroscience. Here we show how a simple theoretical model leads to an extended set of predictions concerning the distribution of response time and its alteration by simultaneous performance of another task. The model provides a synthesis of psychological refractory period and random-walk models of response time. It merely assumes that a task consists of three consecutive stages—perception, decision based on noisy integration of evidence, and response—and that the perceptual and motor stages can operate simultaneously with stages of another task, while the central decision process constitutes a bottleneck. We designed a number-comparison task that provided a thorough test of the model by allowing independent variations in number notation, numerical distance, response complexity, and temporal asynchrony relative to an interfering probe task of tone discrimination. The results revealed a parsing of the comparison task in which each variable affects only one stage. Numerical distance affects the integration process, which is the only step that cannot proceed in parallel and has a major contribution to response time variability. The other stages, mapping the numeral to an internal quantity and executing the motor response, can be carried out in parallel with another task. Changing the duration of these processes has no significant effect on the variance.  相似文献   

3.
The control of behaviour is usually understood in terms of three distinct components: sensory processing, decision making and movement control. Recently, this view has been questioned on the basis of physiological and behavioural data, blurring the distinction between these three stages. This raises the question to what extent the motor system itself can contribute to the interpretation of behavioural situations. To investigate this question we use a neural model of sensory motor integration applied to a behaving mobile robot performing a navigation task. We show that the population response of the motor system provides a substrate for the categorization of behavioural situations. This categorization allows for the assessment of the complexity of a behavioural situation and regulates whether higher-level decision making is required to resolve behavioural conflicts. Our model lends credence to an emerging reconceptualization of behavioural control where the motor system can be considered as part of a high-level perceptual system.  相似文献   

4.
In this work we propose a model that simultaneously optimizes the process variables and the structure of a multiproduct batch plant for the production of recombinant proteins. The complete model includes process performance models for the unit stages and a posynomial representation for the multiproduct batch plant. Although the constant time and size factor models are the most commonly used to model multiproduct batch processes, process performance models describe these time and size factors as functions of the process variables selected for optimization. These process performance models are expressed as algebraic equations obtained from the analytical integration of simplified mass balances and kinetic expressions that describe each unit operation. They are kept as simple as possible while retaining the influence of the process variables selected to optimize the plant. The resulting mixed-integer nonlinear program simultaneously calculates the plant structure (parallel units in or out of phase, and allocation of intermediate storage tanks), the batch plant decision variables (equipment sizes, batch sizes, and operating times of semicontinuous items), and the process decision variables (e.g., final concentration at selected stages, volumetric ratio of phases in the liquid-liquid extraction). A noteworthy feature of the proposed approach is that the mathematical model for the plant is the same as that used in the constant factor model. The process performance models are handled as extra constraints. A plant consisting of eight stages operating in the single product campaign mode (one fermentation, two microfiltrations, two ultrafiltrations, one homogenization, one liquid-liquid extraction, and one chromatography) for producing four different recombinant proteins by the genetically engineered yeast Saccharomyces cerevisiae was modeled and optimized. Using this example, it is shown that the presence of additional degrees of freedom introduced by the process performance models, with respect to a fixed size and time factor model, represents an important development in improving plant design.  相似文献   

5.
It has been argued that perception, decision making, and movement planning are in reality tightly interwoven brain processes. However, how they are implemented in neural circuits is still a matter of debate. We tested human subjects in a temporal categorization task in which intervals had to be categorized as short or long. Subjects communicated their decision by moving a cursor into one of two possible targets, which appeared separated by different angles from trial to trial. Even though there was a 1 second-long delay between interval presentation and decision communication, categorization difficulty affected subjects’ performance, reaction (RT) and movement time (MT). In addition, reaction and movement times were also influenced by the distance between the targets. This implies that not only perceptual, but also movement-related considerations were incorporated into the decision process. Therefore, we searched for a model that could use categorization difficulty and target separation to describe subjects’ performance, RT, and MT. We developed a network consisting of two mutually inhibiting neural populations, each tuned to one of the possible categories and composed of an accumulation and a memory node. This network sequentially acquired interval information, maintained it in working memory and was then attracted to one of two possible states, corresponding to a categorical decision. It faithfully replicated subjects’ RT and MT as a function of categorization difficulty and target distance; it also replicated performance as a function of categorization difficulty. Furthermore, this model was used to make new predictions about the effect of untested durations, target distances and delay durations. To our knowledge, this is the first biologically plausible model that has been proposed to account for decision making and communication by integrating both sensory and motor planning information.  相似文献   

6.
Pendt LK  Reuter I  Müller H 《PloS one》2011,6(7):e21669
Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance.  相似文献   

7.
The way that we interpret and interact with the world entails making decisions on the basis of available sensory evidence. Recent primate neurophysiology [1-6], human neuroimaging [7-13], and modeling experiments [14-19] have demonstrated that perceptual decisions are based on an integrative process in which sensory evidence accumulates over time until an internal decision bound is reached. Here we used repetitive transcranial magnetic stimulation (rTMS) to provide causal support for the role of the dorsolateral prefrontal cortex (DLPFC) in this integrative process. Specifically, we used a speeded perceptual categorization task designed to induce a time-dependent accumulation of sensory evidence through rapidly updating dynamic stimuli and found that disruption of the left DLPFC with low-frequency rTMS reduced accuracy and increased response times relative to a sham condition. Importantly, using the drift-diffusion model, we show that these behavioral effects correspond to a decrease in drift rate, a parameter describing the rate and thereby the efficiency of the sensory evidence integration in the decision process. These results provide causal evidence linking the DLPFC to the mechanism of evidence accumulation during perceptual decision making.  相似文献   

8.

Background

When two tasks are presented within a short interval, a delay in the execution of the second task has been systematically observed. Psychological theorizing has argued that while sensory and motor operations can proceed in parallel, the coordination between these modules establishes a processing bottleneck. This model predicts that the timing but not the characteristics (duration, precision, variability…) of each processing stage are affected by interference. Thus, a critical test to this hypothesis is to explore whether the qualitiy of the decision is unaffected by a concurrent task.

Methodology/Principal Findings

In number comparison–as in most decision comparison tasks with a scalar measure of the evidence–the extent to which two stimuli can be discriminated is determined by their ratio, referred as the Weber fraction. We investigated performance in a rapid succession of two non-symbolic comparison tasks (number comparison and tone discrimination) in which error rates in both tasks could be manipulated parametrically from chance to almost perfect. We observed that dual-task interference has a massive effect on RT but does not affect the error rates, or the distribution of errors as a function of the evidence.

Conclusions/Significance

Our results imply that while the decision process itself is delayed during multiple task execution, its workings are unaffected by task interference, providing strong evidence in favor of a sequential model of task execution.  相似文献   

9.
10.

Background

Voluntary motor deficits are a common feature in Huntington''s disease (HD), characterised by movement slowing and performance inaccuracies. This deficit may be exacerbated when visual cues are restricted.

Objective

To characterize the upper limb motor profile in HD with various levels of difficulty, with and without visual targets.

Methods

Nine premanifest HD (pre-HD), nine early symptomatic HD (symp-HD) and nine matched controls completed a motor task incorporating Fitts'' law, a model of human movement enabling the quantification of movement timing, via the manipulation of task difficulty (i.e., target size, and distance between targets). The task required participants to make reciprocal movements under cued and blind conditions. Dwell times (time stationary between movements), speed, accuracy and variability of movements were compared between groups.

Results

Symp-HD showed significantly prolonged and less consistent movement times, compared with controls and pre-HD. Furthermore, movement planning and online control were significantly impaired in symp-HD, compared with controls and pre-HD, evidenced by prolonged dwell times and deceleration times. Speed and accuracy were comparable across groups, suggesting that group differences observed in movement time, variability, dwell time and deceleration time were evident over and above simple performance measures. The presence of cues resulted in greater movement time variability in symp-HD, compared with pre-HD and controls, suggesting that the deficit in movement consistency manifested only in response to targeted movements.

Conclusions

Collectively, these findings provide evidence of a deficiency in both motor planning, particularly in relation to movement timing and online control, which became exacerbated as a function of task difficulty during symp-HD stages. These variables may provide a more sensitive measure of motor dysfunction than speed and/or accuracy alone in symp-HD.  相似文献   

11.
Saccadic reaction times (SRTs) were analyzed in the context of stochastic models of information processing (e.g., Townsend and Ashby 1983) to reveal the processing architecture(s) underlying integrative interactions between visual and auditory inputs and the mechanisms of express saccades. The results support the following conclusions. Bimodal (visual + auditory) targets are processed in parallel, and facilitate SRT to an extent that exceeds levels attainable by probability summation. This strongly implies neural summation between elements responding to spatially aligned visual and auditory inputs in the human oculomotor system. Second, express saccades are produced within a separable processing stage that is organized in series with that responsible for intersensory integration. A model is developed that implements this combination of parallel and serial processing. The activity in parallel input channels is summed within a sensory stage which is organized in series with a pre-motor and motor stage. The time course of each subprocess is considered a random variable, and different experimental manipulations can selectively influence different stages. Parallels between the model and physiological data are explored.  相似文献   

12.
Cognitive and neuroscientific evidence has challenged the widespread view that perception, cognition and action constitute independent, discrete stages. For example, in continuous response trajectories toward a target response location, evidence suggests that a decision on which target to reach for (i.e., the cognition stage) is not reached before the movement starts (i.e., the action stage). As a result, instead of a straight trajectory to the correct target response, movement trajectories may curve toward competing responses or away from inhibited responses. In the present study, we examined response trajectories during a number comparison task. Participants had to decide whether a target number was smaller or larger than 5. They had to respond by moving to a left or a right response location. Replicating previous results, response trajectories were more curved toward the incorrect response location when distance to 5 was small (e.g., target number 4) than when distance to 5 was large (e.g., target number 1). Importantly, we manipulated the response mapping, which allowed us to demonstrate that this response trajectory effect results from the relative amount of evidence for the available responses across time. In this way, the present study stresses the tight coupling of number representations (i.e., cognition) and response related processes (i.e., action) and shows that these stages are not separable in time.  相似文献   

13.
The frequency of skin-galvanic (SGR) and motor reactions was analyzed at recognition of human emotional state by mimics. 31 healthy persons and 54 patients with lesions of temporal and frontoparietal areas of both cerebral hemispheres were examined. It has been established that the process of recognition takes place by stages: at first - at intuitive level accompanied by SGR, and then at the level of making decision completed by a motor or verbal reaction. Efficiency of recognition at the first stage does not so much depend on lesion localization as at the second stage. Pathology of the left hemisphere affects mainly the stage of making decision, and of the right one - the process of recognition as a whole.  相似文献   

14.
Efficient cognitive decisions should be adjustable to incoming novel information. However, most current models of decision making have so far neglected any potential interaction between intentional and stimulus-driven decisions. We report here behavioral results and a new model on the interaction between a perceptual decision and non-predictable novel information. We asked participants to anticipate their response to an external stimulus and presented this stimulus with variable delay. Participants were clearly able to adjust their initial decision to the new stimulus if this latter appeared sufficiently early. To account for these results, we present a two-stage model in which two systems, an intentional and a stimulus-driven, interact only in the second stage. In the first stage of the model, the intentional and stimulus-driven processes race independently to reach a transition threshold between the two stages. The model can also account for results of a second experiment where a response bias is introduced. Our model is consistent with some physiological results that indicate that both parallel and interactive processing take place between intentional and stimulus-driven information. It emphasizes that in natural conditions, both types of processing are important and it helps pinpoint the transition between parallel and interactive processing.  相似文献   

15.
Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing.  相似文献   

16.
Reverse averaging of cortical potentials from the moment of the motor response followed the verbal task solving (anagram riddle) revealed some brain potentials correlations with the process of a decision making. In the case of task solving the negative frontal wave with the latency 900-400 ms from the motor response was recorded. Intracortical interaction mapping of this potential showed the regular patterns of cortical functional connections in different frequency ranges (alpha, beta). Successful solving of the task was characterized with predominant interaction foci topography in the frontal and left-temporal cortical areas in alpha band and parietal zones in beta. The absence of the task solution was characterized with the parieto-occipital interaction foci in alpha band and their frontal localization in beta.  相似文献   

17.
Embodied Choice considers action performance as a proper part of the decision making process rather than merely as a means to report the decision. The central statement of embodied choice is the existence of bidirectional influences between action and decisions. This implies that for a decision expressed by an action, the action dynamics and its constraints (e.g. current trajectory and kinematics) influence the decision making process. Here we use a perceptual decision making task to compare three types of model: a serial decision-then-action model, a parallel decision-and-action model, and an embodied choice model where the action feeds back into the decision making. The embodied model incorporates two key mechanisms that together are lacking in the other models: action preparation and commitment. First, action preparation strategies alleviate delays in enacting a choice but also modify decision termination. Second, action dynamics change the prospects and create a commitment effect to the initially preferred choice. Our results show that these two mechanisms make embodied choice models better suited to combine decision and action appropriately to achieve suitably fast and accurate responses, as usually required in ecologically valid situations. Moreover, embodied choice models with these mechanisms give a better account of trajectory tracking experiments during decision making. In conclusion, the embodied choice framework offers a combined theory of decision and action that gives a clear case that embodied phenomena such as the dynamics of actions can have a causal influence on central cognition.  相似文献   

18.
Estimating the difficulty of a decision is a fundamental process to elaborate complex and adaptive behaviour. In this paper, we show that the movement time of behaving monkeys performing a decision-making task is correlated with decision difficulty and that the activity of a population of neurons in ventral Premotor cortex correlates with the movement time. Moreover, we found another population of neurons that encodes the discriminability of the stimulus, thereby supplying another source of information about the difficulty of the decision. The activity of neurons encoding the difficulty can be produced by very different computations. Therefore, we show that decision difficulty can be encoded through three different mechanisms: 1. Switch time coding, 2. rate coding and 3. binary coding. This rich representation reflects the basis of different functional aspects of difficulty in the making of a decision and the possible role of difficulty estimation in complex decision scenarios.  相似文献   

19.
The mechanisms of perceptual decision-making are frequently studied through measurements of reaction time (RT). Classical sequential-sampling models (SSMs) of decision-making posit RT as the sum of non-overlapping sensory, evidence accumulation, and motor delays. In contrast, recent empirical evidence hints at a continuous-flow paradigm in which multiple motor plans evolve concurrently with the accumulation of sensory evidence. Here we employ a trial-to-trial reliability-based component analysis of encephalographic data acquired during a random-dot motion task to directly image continuous flow in the human brain. We identify three topographically distinct neural sources whose dynamics exhibit contemporaneous ramping to time-of-response, with the rate and duration of ramping discriminating fast and slow responses. Only one of these sources, a parietal component, exhibits dependence on strength-of-evidence. The remaining two components possess topographies consistent with origins in the motor system, and their covariation with RT overlaps in time with the evidence accumulation process. After fitting the behavioral data to a popular SSM, we find that the model decision variable is more closely matched to the combined activity of the three components than to their individual activity. Our results emphasize the role of motor variability in shaping RT distributions on perceptual decision tasks, suggesting that physiologically plausible computational accounts of perceptual decision-making must model the concurrent nature of evidence accumulation and motor planning.  相似文献   

20.
As our understanding of the basic processes underlying reading is growing, the key role played by attention in this process becomes evident. Two research topics are of particular interest in this domain: (1) it is still undetermined whether sustained attention affects lexical decision tasks; (2) the influence of attention on early visual processing (i.e., before orthographic or lexico-semantic processing stages) remains largely under-specified. Here we investigated early perceptual modulations by sustained attention using an ERP paradigm adapted from Thierry et al. [1]. Participants had to decide whether visual stimuli presented in pairs pertained to a pre-specified category (lexical categorization focus on word or pseudoword pairs). Depending on the lexical category of the first item of a pair, participants either needed to fully process the second item (hold condition) or could release their attention and make a decision without full processing of the second item (release condition). The P1 peak was unaffected by sustained attention. The N1 was delayed and reduced after the second item of a pair when participants released their attention. Release of sustained attention also reduced a P3 wave elicited by the first item of a pair and abolished the P3 wave elicited by the second. Our results are consistent with differential effects of sustained attention on early processing stages and working memory. Sustained attention modulated early processing stages during a lexical decision task without inhibiting the process of stimulus integration. On the contrary, working memory involvement/updating was highly dependent upon the allocation of sustained attention. Moreover, the influence of sustained attention on both early and late cognitive processes was independent of lexical categorization focus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号