首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salmonella enterica Typhimurium induces intestinal inflammation through the activity of type III secreted effector (T3SE) proteins. Our prior results indicate that the secretion of the T3SE SipA and the ability of SipA to induce epithelial cell responses that lead to induction of polymorphonuclear transepithelial migration are not coupled to its direct delivery into epithelial cells from Salmonella. We therefore tested the hypothesis that SipA interacts with a membrane protein located at the apical surface of intestinal epithelial cells. Employing a split ubiquitin yeast‐two‐hybrid screen, we identified the tetraspanning membrane protein, p53 effector related to PMP‐22 (PERP), as a SipA binding partner. SipA and PERP appear to have intersecting activities as we found PERP to be involved in proinflammatory pathways shown to be regulated by SipA. In sum, our studies reveal a critical role for PERP in the pathogenesis of S. Typhimurium, and for the first time demonstrate that SipA, a T3SE protein, can engage a host protein at the epithelial surface.  相似文献   

2.
Salmonella force their way into nonphagocytic host intestinal cells to initiate infection. Uptake is triggered by delivery into the target cell of bacterial effector proteins that stimulate cytoskeletal rearrangements and membrane ruffling. The Salmonella invasion protein A (SipA) effector is an actin binding protein that enhances uptake efficiency by promoting actin polymerization. SipA-bound actin filaments (F-actin) are also resistant to artificial disassembly in vitro. Using biochemical assays of actin dynamics and actin-based motility models, we demonstrate that SipA directly arrests cellular mechanisms of actin turnover. SipA inhibits ADF/cofilin-directed depolymerization both by preventing binding of ADF and cofilin and by displacing them from F-actin. SipA also protects F-actin from gelsolin-directed severing and reanneals gelsolin-severed F-actin fragments. These data suggest that SipA focuses host cytoskeletal reorganization by locally inhibiting both ADF/cofilin- and gelsolin-directed actin disassembly, while simultaneously stimulating pathogen-induced actin polymerization.  相似文献   

3.
Salmonella Typhimurium causes bacterial enterocolitis. The type III secretion system (TTSS)-1 is a key virulence determinant of S. Typhimurium mediating host cell invasion and acute enterocolitis. The TTSS-1 effector protein SipA is transported into host cells, accumulates in characteristic foci at the bacteria-host cell interface, manipulates signalling and affects virulence. Two functional domains of SipA have previously been characterized: The N-terminal SipA region (amino acids 1-105) mediates TTSS-1 transport and the C-terminal SipA 'actin-binding' domain (ABD; amino acids 446-685) manipulates F-actin assembly. Little is known about the central region of SipA. In a deletion analysis we found that the central SipA region harbours two distinct functional domains, F1 and F2. They are involved in SipA focus formation and host manipulation. The F1 domain (amino acids 170-271) drives SipA focus formation and domain F2 (amino acids 280-394) enhances this process by mediating SipA-SipA interactions. SipA variants lacking the F1-, the F2- or the actin binding domain were attenuated in virulence assays, namely host cell invasion and/or virulence in a mouse model for enterocolitis. Our results show that the newly identified SipA domains have distinct functions. Nevertheless, cooperation between the SipA domains F1, F2 and ABD is required to promote Salmonella virulence.  相似文献   

4.
5.
Salmonella enterica subspecies 1 serovar Typhimurium (S. Typhimurium) causes diarrhea and acute inflammation of the intestinal mucosa. The pro-inflammatory cytokines IL-17A and IL-17F are strongly induced in the infected mucosa but their contribution in driving the tissue inflammation is not understood. We have used the streptomycin mouse model to analyze the role of IL-17A and IL-17F and their cognate receptor IL-17RA in S. Typhimurium enterocolitis. Neutralization of IL-17A and IL-17F did not affect mucosal inflammation triggered by infection or spread of S. Typhimurium to systemic sites by 48 h p.i. Similarly, Il17ra(-/-) mice did not display any reduction in infection or inflammation by 12 h p.i. The same results were obtained using S. Typhimurium variants infecting via the TTSS1 type III secretion system, the TTSS1 effector SipA or the TTSS1 effector SopE. Moreover, the expression pattern of 45 genes encoding chemokines/cytokines (including CXCL1, CXCL2, IL-17A, IL-17F, IL-1α, IL-1β, IFNγ, CXCL-10, CXCL-9, IL-6, CCL3, CCL4) and antibacterial molecules was not affected by Il17ra deficiency by 12 h p.i. Thus, in spite of the strong increase in Il17a/Il17f mRNA in the infected mucosa, IL-17RA signaling seems to be dispensable for eliciting the acute disease. Future work will have to address whether this is attributable to redundancy in the cytokine signaling network.  相似文献   

6.
The Salmonella pathogenicity island 1 (SPI-1) type three secretion system (TTSS) is essential for Salmonella invasion of host cells through its triggering of actin-dependent membrane ruffles. The SPI-1 effectors SipA, SopE, SopE2 and SopB all have actin regulating activities and contribute to invasion. The precise role of actin regulation by SipA in Salmonella invasion remains controversial since divergent data have been presented regarding the relationship between SipA and membrane ruffling. We hypothesized that the contribution of SipA to membrane ruffling and invasion might vary between Salmonella strains. We compared the effects of SipA deletion on Salmonella enterica serovar Typhimurium ( S.  Typhimurium) strains that possess or lack SopE. Loss of SipA reduced invasion in the early stages of infection by SopE+ and SopE- strains but the number of membrane ruffles elicited was unaffected. Salmonella strains lacking both SipA and SopE induced ruffles with very different morphology from those induced by wild-type strains or ones lacking single effectors, including the presence of highly dynamic finger-like protrusions and numerous filopodia. A similar phenotype was found for sipA - sopE -, sipA - sopE2 - and sipA - sopB - mutants. Thus, SipA plays a more prominent role in induction of invasion-competent membrane ruffles by Salmonella lacking a full complement of SPI-1 effectors.  相似文献   

7.
In human intestinal disease induced by Salmonella enterica serotype Typhimurium (S. typhimurium) transepithelial migration of polymorphonuclear leukocytes (PMNs) rapidly follows attachment of the bacteria to the epithelial apical membrane. Previously, we have shown that the S. typhimurium effector protein, SipA, plays a pivotal role in signalling epithelial cell responses that lead to the transepithelial migration of PMNs. Thus, the objective of this study was to determine the functional domain of SipA that regulates this signalling event. SipA was divided into two fragments: the SipAb C-terminal fragment(426-684) (259 AA), which binds actin, and the SipAa fragment(2-425) (424 AA), which a role has yet to be described. In both in vitro and in vivo models of S. typhimurium-induced intestinal inflammation the SipAa fragment exhibited a profound ability to induce PMN transmigration, whereas the SipAb actin-binding domain failed to induce PMN transmigration. Subsequent mapping of the SipAa domain identified a 131-amino-acid region (SipAa3(294-424)) responsible for modulating PMN transepithelial migration. Interestingly, neither intracellular translocation nor actin association of SipA was necessary for its ability to induce PMN transepithelial migration. As these results indicate SipA has at least two separate functional domains, we speculate that during infection S. typhimurium requires delivery of SipA to both extracellular and intracellular spaces to maximize pro-inflammatory responses and mechanisms of bacterial invasion.  相似文献   

8.
The invasiveness of Salmonella enterica serovar Typhimurium (S. Typhimurium) is closely associated with the Salmonella pathogenicity island (SPI)‐encoded type Ⅲ secretion system (T3SS), which can directly inject a series of effector proteins into eukaryotic cells to enable bacterial infection. In this study, syringaldehyde was identified as an effective inhibitor of the S. Typhimurium T3SS using an effector protein‐lactamase fusion reporter system. Syringaldehyde treatment could inhibit the expression of important effector proteins (SipA, SipB and SipC) at a concentration of 0.18 mM without affecting bacterial growth. Additionally, significant inhibition of bacterial invasion and cellular injury was observed following the syringaldehyde treatment in the co‐infection system of HeLa cells and S. Typhimurium. Furthermore, treatment with syringaldehyde provided systemic protection to mice infected with S. Typhimurium, reducing mortality (40.00%) and bacterial loads and relieving caecal damage and systemic inflammation. The results presented in this study indicate that syringaldehyde significantly affects T3SS activity and is a potential leading compound for treating S. Typhimurium infections.  相似文献   

9.
Effectors translocated into the host cell by Salmonella enterica serovar Typhimurium are critical for bacterial virulence. For many effectors, the mechanisms of their interactions with host pathways are not yet understood. We have recently found an interaction between the SPI-2 effector SseL and oxysterol-binding protein (OSBP). We show here that SseL binds the N-terminus of OSBP and that S. Typhimurium infection results in redistribution of OSBP. We furthermore demonstrate that OSBP is required for efficient replication of intracellular S. Typhimurium. This suggests that S. Typhimurium hijacks OSBP-dependent pathways to benefit its intracellular life-style, possibly by SseL- and OSBP-mediated manipulation of host lipid metabolism.  相似文献   

10.
Host resistance against Salmonella enterica serovar Typhimurium ( S . Typhimurium) is mediated by natural resistance-associated macrophage protein 1 (Nramp1/Slc11a1). Nramp1 is critical to host defence, as mice lacking Nramp1 fail to control bacterial replication and succumb to low doses of S . Typhimurium. Despite this crucial role, the mechanisms underlying Nramp1's protective effects are unclear. Dendritic cells (DCs) that sample the intestinal lumen are among the first cells encountered by S. Typhimurium following oral infection and act as a conduit for S. Typhimurium to cross the intestinal epithelial barrier. We report that DCs, including intestinal, splenic and bone marrow-derived DCs (BMDCs), express Nramp1 protein. In the small intestine, Nramp1 expression is greater in a subset of DCs (CD11c+CD103-) characterized by the elevated expression of pro-inflammatory cytokines in response to bacterial products. While Nramp1 expression did not affect S. Typhimurium replication in BMDCs, infected Nramp1+/+ BMDCs and intestinal CD11c+CD103- DCs secreted more inflammatory cytokines (IL-6, IL-12 and TNF-α) than Nramp1−/−, suggesting that Nramp1 expression may promote a more rapid inflammatory response following infection. Collectively, these findings reveal a new role for DCs and Nramp1 in modulating the host inflammatory response to S. Typhimurium.  相似文献   

11.
A massive neutrophil influx in the intestine is the histopathological hallmark of Salmonella enterica serovar Typhimurium-induced enterocolitis in humans. Two major hypotheses on the mechanism leading to neutrophil infiltration in the intestinal mucosa have emerged. One hypothesis suggests that S. enterica serovar Typhimurium takes an active role in triggering this host response by injecting proteins, termed effectors, into the host cell cytosol which induce a proinflammatory gene expression profile in the intestinal epithelium. The second hypothesis suggests a more passive role for the pathogen by proposing that bacterial invasion stimulates the innate pathways of inflammation because the pathogen-associated molecular patterns of S. enterica serovar Typhimurium are recognized by pathogen recognition receptors on cells in the lamina propria. A review of the current literature reveals that, while pathogen recognition receptors are clearly involved in eliciting neutrophil influx during S. enterica serovar Typhimurium infection, a direct contribution of effectors in triggering proinflammatory host cell responses cannot currently be ruled out.  相似文献   

12.
Salmonella enterica serovar Typhimurium (S. Typhimurium) uses two-component regulatory systems (TCRS) to respond to stimuli in the local microenvironment. Upon infection, the Salmonella TCRSs PhoP-PhoQ (PhoPQ) and PmrA-PmrB (PmrAB) are activated by environmental signals in the intestinal lumen and within host cells. TCRS-mediated gene expression results in lipopolysaccharide (LPS) modification and cationic antimicrobial peptide resistance. The PmrA-regulated pmrHFIJKLM operon mediates 4-amino-4-deoxy-L-arabinose (Ara4N) production and attachment to the lipid A of LPS. A ΔpmrF S. Typhimurium strain cannot produce Ara4N, exhibits increased sensitivity to cationic antimicrobial peptide (CAMP)-mediated killing, and attenuated virulence in mice upon oral infection. CAMPs are predicted to play a role in elimination of Salmonella, and may activate PhoPQ and PmrAB in vivo, which could increase bacterial resistance to host defenses. Competition experiments between wild type (WT) and ΔpmrF mutant strains of S. Typhimurium indicated that selection against this mutant first occurs within the intestinal lumen early during infection. However, CRAMP and active cryptdins alone are not responsible for elimination of Ara4N-deficient bacteria in vivo. Investigation into the early immune response to ΔpmrF showed that it differed slightly from the early immune response to WT S. Typhimurium. Further investigation into the early immune response to infection of Peyer’s patches suggests a role for IL-13 in the attenution of the ΔpmrF mutant strain. Thus, prominent CAMPs present in the mouse intestine are not responsible for the selection against the ΔpmrF strain in this location, but limited alterations in innate immune induction were observed that affect bacterial survival and virulence.  相似文献   

13.
CsrA is a regulator of invasion genes in Salmonella enterica serovar Typhimurium. To investigate the wider role of CsrA in gene regulation, we compared the expression of Salmonella genes in a csrA mutant with those in the wild type using a DNA microarray. As expected, we found that expression of Salmonella pathogenicity island 1 (SPI-1) invasion genes was greatly reduced in the csrA mutant, as were genes outside the island that encode proteins translocated into eukaryotic cells by the SPI-1 type III secretion apparatus. The flagellar synthesis operons, flg and fli, were also poorly expressed, and the csrA mutant was aflagellate and non-motile. The genes of two metabolic pathways likely to be used by Salmonella in the intestinal milieu also showed reduced expression: the pdu operon for utilization of 1,2-propanediol and the eut operon for ethanolamine catabolism. Reduced expression of reporter fusions in these two operons confirmed the microarray data. Moreover, csrA was found to regulate co-ordinately the cob operon for synthesis of vitamin B12, required for the metabolism of either 1,2-propanediol or ethanolamine. Additionally, the csrA mutant poorly expressed the genes of the mal operon, required for transport and use of maltose and maltodextrins, and had reduced amounts of maltoporin, normally a dominant protein of the outer membrane. These results show that csrA controls a number of gene classes in addition to those required for invasion, some of them unique to Salmonella, and suggests a co-ordinated bacterial response to conditions that exist at the site of bacterial invasion, the intestinal tract of a host animal.  相似文献   

14.
Salmonella entry into epithelial host cells results from the host actin cytoskeleton reorganization that is induced by a group of bacterial proteins delivered to the host cells by the Salmonella type III secretion system. SopE, SopE2 and SopB activate CDC42 and Rac1 to intercept the signal transduction pathways involved in actin cytoskeleton rearrangements. SipA and SipC directly bind actin to modulate the actin dynamics facilitating bacterial entry. Biochemical studies have indicated that SipA decreases the critical concentration for actin polymerization and may be involved in promoting the initial actin polymerization in Salmonella-induced actin reorganization. In this report, we conducted experiments to analyze the in vivo function(s) of SipA during Salmonella invasion. SipA was found to be preferentially associated with peripheral cortical actin filaments but not stress fibres using permeabilized epithelial cells. When polarized Caco-2 cells were infected with Salmonella, actin cytoskeleton rearrangements induced by the wild-type strain had many filopodia structures that were intimately associated with the bacteria. In contrast, ruffles induced by the sipA null mutant were smoother and distant from the bacteria. We also found that the F-actin content in cells infected with the sipA mutant decreased nearly 80% as compared to uninfected cells or those infected with the wild-type Salmonella strain. Furthermore, expression of either the full-length or the SipA(459-684) actin-binding fragment induced prominent punctuate actin assembly in the cortical region of COS-1 cells. These results indicate that SipA is involved in modulating actin dynamics in cultured epithelial cells during Salmonella invasion.  相似文献   

15.
16.
Salmonella enterica serovar Typhimurium is a major cause of human gastroenteritis. Infection of epithelial monolayers by S. Typhimurium disrupts tight junctions that normally maintain the intestinal barrier and regulate cell polarity. Tight junction disruption is dependent upon the Salmonella pathogenicity island-1 (SPI-1) type 3 secretion system but the specific effectors involved have not been identified. In this study we demonstrate that SopB, SopE, SopE2 and SipA are the SPI-1-secreted effectors responsible for disruption of tight junction structure and function. Tight junction disruption by S. Typhimurium was prevented by inhibiting host protein geranylgeranylation but was not dependent on host protein synthesis or secretion of host-derived products. Unlike wild-type S. Typhimurium, DeltasopB, DeltasopE/E2, DeltasipA, or DeltasipA/sopB mutants, DeltasopB/E/E2 and DeltasipA/sopE/E2 mutants were unable to increase the permeability of polarized epithelial monolayers, did not disrupt the distribution or levels of ZO-1 and occludin, and did not alter cell polarity. These data suggest that SPI-1-secreted effectors utilize their ability to stimulate Rho family GTPases to disrupt tight junction structure and function.  相似文献   

17.
18.
Salmonella enterica serovar Typhimurium is a clinically important gram-negative, enteric bacterial pathogen that activates several Toll-like receptors (TLRs). While TLR signaling through the adaptor protein MyD88 has been shown to promote inflammation and host defense against the systemic spread of S. Typhimurium, curiously, its role in the host response against S. Typhimurium within the mammalian gastrointestinal (GI) tract is less clear. We therefore used the recently described Salmonella-induced enterocolitis and fibrosis model: wild-type (WT) and MyD88-deficient (MyD88(-/-)) mice pretreated with streptomycin and then orally infected with the ΔaroA vaccine strain of S. Typhimurium. Tissues were analyzed for bacterial colonization, inflammation, and epithelial damage, while fibrosis was assessed by collagen quantification and Masson's trichrome staining. WT and MyD88(-/-) mice carried similar intestinal pathogen burdens to postinfection day 21. Infection of WT mice led to acute mucosal and submucosal inflammation and edema, as well as significant intestinal epithelial damage and proliferation, leading to widespread goblet cell depletion. Impressive collagen deposition in the WT intestine was also evident in the submucosa at postinfection days 7 and 21, with fibrotic regions rich in fibroblasts and collagen. While infected MyD88(-/-) mice showed levels of submucosal inflammation and edema similar to WT mice, they were impaired in the development of mucosal inflammation, along with infection-induced epithelial damage, proliferation, and goblet cell depletion. MyD88(-/-) mouse tissues also had fewer submucosal fibroblasts and 60% less collagen. We noted that cyclooxygenase (Cox)-2 expression was MyD88-dependent, with numerous Cox-2-positive cells identified in fibrotic regions of WT mice at postinfection day 7, but not in MyD88(-/-) mice. Treatment of WT mice with the Cox-2 inhibitor rofecoxib (20 mg/kg) significantly reduced fibroblast numbers and collagen levels without altering colitis severity. In conclusion, MyD88 and Cox-2 signaling play roles in intestinal fibrosis during Salmonella-induced enterocolitis.  相似文献   

19.
Salmonella phosphothreonine lyase SpvC inactivates the dual-phosphorylated host mitogen-activated protein kinases (MAPK) through β-elimination. While SpvC can be secreted in vitro by both Salmonella pathogenicity island (SPI)-1 and SPI-2 type III secretion systems (T3SSs), translocation of this protein into the host cell cytosol has only been demonstrated by SPI-2 T3SS. In this study, we show that SpvC can be delivered into the host cell cytoplasm by both SPI-1 and SPI-2 T3SSs. Dephosphorylation of the extracellular signal-regulated protein kinases (ERK) was detected in an SPI-1 T3SS-dependent manner 2 h post infection. Using a mouse model for Salmonella enterocolitis, which was treated with streptomycin prior to infection, we observed that mice infected with Salmonella enterica serovar Typhimurium strains lacking the spvC gene showed pronounced colitis when compared with mice infected with the wild-type strain 1 day after infection. The effect of SpvC on the development of colitis was characterized by reduced mRNA levels of the pro-inflammatory cytokines and chemokines, and reduced inflammation with less infiltration of neutrophils. Furthermore, the reduction in inflammation by SpvC resulted in increased bacterial dissemination in spleen of mice infected with Salmonella. Collectively, our findings suggest that SpvC exerts as an anti-inflammatory effector and the attenuation of intestinal inflammatory response by SpvC is involved in systemic infection of Salmonella.  相似文献   

20.
Pathogen-induced remodelling of the host cell actin cytoskeleton drives internalization of invasive Salmonella by non-phagocytic intestinal epithelial cells. Two Salmonella actin-binding proteins are involved in internalization: SipC is essential for the process, while SipA enhances its efficiency. Using purified SipC and SipA proteins in in vitro assays of actin dynamics and F-actin bundling, we demonstrate that SipA stimulates substantially SipC-mediated nucleation of actin polymerization. SipA additionally enhances SipC-mediated F-actin bundling, and SipC-SipA collaboration generates stable networks of F-actin bundles. The data show that bacterial SipC and SipA cooperate to direct efficient modulation of actin dynamics, independently of host cell proteins. The ability of SipA to enhance SipC-induced reorganization of the actin cytoskeleton in vivo was confirmed using semi-permeabilized cultured mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号