首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Trzeciak, A. R., Barnes, J. and Evans, M. K. A Modified Alkaline Comet Assay for Measuring DNA Repair Capacity in Human Populations. Radiat. Res. 169, 110-121 (2008). Use of the alkaline comet assay to assess DNA repair capacity in human populations has been limited by several factors, including lack of methodology for use of unstimulated cryopreserved peripheral blood mononuclear cells (PBMCs), insufficient control of interexperimental variability, and limited analysis of DNA repair kinetics. We show that unstimulated cryopreserved PBMCs can be used in DNA repair studies performed using the comet assay. We have applied data standardization for the analysis of DNA repair capacity using negative and positive internal standards as controls for interexperimental variability. Our standardization procedure also uses negative controls, which provides a way to minimize the interference of interindividual variation in baseline DNA damage levels on DNA repair capacity measurements in populations. DNA repair capacity was assessed in a small human cohort using the parameters described in the literature including initial DNA damage, half-time of DNA repair, and residual DNA damage after 30 and 60 min. We have also introduced new DNA repair capacity parameter, initial rate of DNA repair. There was no difference in DNA repair capacity between fresh and cryopreserved PBMCs when measured by the Olive tail moment and tail DNA. The use of DNA repair capacity parameters in assessment of fast and slow single-strand break repair components is discussed.  相似文献   

2.
As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.  相似文献   

3.
Use of cryopreserved semen has become an important tool in assisted reproduction but freezing and thawing cause sub-lethal damage to spermatozoa. This is detrimental to sperm because of the membrane damage including permeability and integrity. An excess generation of reactive oxygen species (ROS) creates oxidative stress due to reduced antioxidant status of the cryopreserved spermatozoa. In the present study fresh buffalo semen was collected and divided into two aliquots. One aliquot was used for fresh semen analysis and the other was cryopreserved in Tris-egg yolk-citrate extender. The semen samples were used to study different sperm quality parameters like motility, viability, membrane integrity and total antioxidant status. The DNA integrity in fresh and cryopreserved spermatozoa was also studied using comet assay. The sperm quality parameters like post-thaw sperm motility, viability, membrane integrity and total antioxidant status of cryopreserved spermatozoa were significantly lowered (P < 0.05) compared to fresh spermatozoa. The DNA fragmentation in cryopreserved spermatozoa was significantly higher (P < 0.01) as compared to fresh spermatozoa. The results show that the irreversible DNA damage occurs in spermatozoa during cryopreservation.  相似文献   

4.
The aim of this study was to determine if the differences observed in the levels of DNA damage in a group of patients suffering from chronic renal failure are due to differences in the repair capability. DNA damage was initially measured with the comet assay in 106 hemodialysis patients. A selected group of 21 patients representing high (ten patients) and low (11 patients) levels of DNA damage were obtained for determination of base excision repair capacity. This was measured in an in vitro assay where protein extracts from lymphocytes were incubated with a substrate of DNA containing 8‐oxoguanine, and the rate of incision was measured with the comet assay. Patients with high levels of genomic damage showed, as an average, significantly lower repair capacity (12·73 ± 1·84) in comparison with patients with low levels of genomic damage (18·13 ± 1·13). Nevertheless, the correlation coefficient between repair ability and levels of genomic damage was found to be only close to the significance value (r:?0·423, p: 0·056). Although DNA damage was clearly related to time on hemodialysis, base excision repair capacity was not. This is one of the few studies providing information on the repair capacity of chronic renal failure patients undergoing hemodialysis. As a summary, our results would indicate that DNA damage levels are in part associated to the repair capacity of the patients, and this repair capacity is not associated with the duration of hemodialysis treatment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Hoffmann H  Speit G 《Mutation research》2005,581(1-2):105-114
The comet assay (single-cell gel electrophoresis, SCG) is being increasingly used in human biomonitoring for the detection of genotoxic exposures. Cigarette smoking is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds. Therefore, smoking should represent a relevant mutagenic exposure and lead to genotoxic effects in exposed cells. However, our previous investigations as well as several other published studies on human biomonitoring failed to show an effect of smoking on DNA migration in the comet assay, while some other studies did indicate such an effect. Although many factors can contribute to the generation of discrepant results in such studies, clear effects should be obtained after high exposure. We therefore performed a comparative study with healthy male heavy smokers (>20 cigarettes per day) and non-smokers (n=12 in each group). We measured the baseline comet assay effects in fresh whole blood samples and isolated lymphocytes. In addition, the amount of 'formamidopyrimidine DNA-glycosylase (FPG)-sensitive sites' was determined by a combination of the standard comet assay with the bacterial FPG protein. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline DNA damage was comparatively analysed. Duplicate slides from each sample were processed and analysed separately. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. Finally, to compare the comet assay results with another genetic endpoint, all blood samples were investigated in parallel by the micronucleus test (MNT). Baseline and gamma radiation-induced micronucleus frequencies were determined. None of these approaches revealed a significant difference between heavy smokers and non-smokers with regard to a genotoxic effect in peripheral blood cells.  相似文献   

6.
Aging is associated with a reduction in the DNA repair capacity under oxidative stress. However, whether the DNA damage and repair capacity can be a biomarker of aging remains controversial. In this study, we demonstrated two cause-and-effect relationships, the one is between the DNA damage and repair capacity and the cellular age, another is between DNA damage and repair capacity and the level of oxidative stress in human embryonic lung fibroblasts (2BS) exposed to different doses of hydrogen peroxide (H2O2). To clarify the mechanisms of the age-related reduction in DNA damage and repair capacity, we preliminarily evaluated the expressions of six kinds of pivotal enzymes involved in the two classical DNA repair pathways. The DNA repair capacity was observed in human fibroblasts cells using the comet assay; the age-related DNA repair enzymes were selected by RT-PCR and then verified by Western blot in vitro. Results showed that the DNA repair capacity was negatively and linearly correlated with (i) cumulative population doubling (PD) levels only in the group of low concentration of hydrogen peroxide treatment, (ii) with the level of oxidative stress only in the group of young PD cells. The mRNA expression of DNA polymerase δ1 decreased substantially in senescent cells and showed negative linear-correlation with PD levels; the protein expression level was well consistent with the mRNA level. Taken together, DNA damage and repair capacity can be a biomarker of aging. Reduced expression of DNA polymerase δ1 may be responsible for the decrease of DNA repair capacity in senescent cells.  相似文献   

7.
Buccal cells are becoming a widely used tissue source for monitoring human exposure to occupational and environmental genotoxicants. A variety of methods exist for collecting buccal cells from the oral cavity, including rinsing with saline, mouthwash, or scraping the oral cavity. Buccal cells are also routinely cryopreserved with dimethyl sulfoxide (DMSO), then examined later for DNA damage by the comet assay. The effects of these different sampling procedures on the integrity of buccal cells for measuring DNA damage are unknown. This study examined the influence of the collection and cryopreservation of buccal cells on cell survival and DNA integrity. In individuals who rinsed with Hank's balanced salt solution (HBSS), the viability of leukocytes (90%) was significantly (p<0.01) greater than that of epithelial cells (12%). Similar survival rates were found for leukocytes (88%) and epithelial cells (10%) after rinsing with Listerine(?) mouthwash. However, the viability of leukocytes after cryopreservation varied significantly (p<0.01) with DMSO concentration. Cell survival was greatest at 5% DMSO. Cryopreservation also influenced the integrity of DNA in the comet assay. Although tail length and tail moment were comparable in fresh or cryopreserved samples, the average head intensity for cryopreserved samples was ~6 units lower (95% CI: 0.8-12 units lower) than for fresh samples (t(25)=-2.36, p=0.026). These studies suggest that the collection and storage of buccal samples are critical factors for the assessment of DNA damage. Moreover, leukocytes appear to be a more reliable source of human tissue for assessing DNA damage and possibly other biochemical changes.  相似文献   

8.
It has been suggested that extended-term cultures of human lymphocytes could be used as a complement to cell lines based on transformed cells when testing the genotoxicity of chemicals. To investigate whether the pattern of induced DNA damage and its subsequent repair differs significantly between cultures based on different blood donors, hydrogen peroxide (H2O2)-induced DNA damage was measured in cultures from four different subjects using the comet assay. The DNA damage was significantly increased in all cultures after 10 min exposure to 0.25 mmol/L H2O2, and there was a significant decrease in the H2O2-induced DNA damage in all cultures after 30 min of DNA repair. The level of damage varied between the different donors, especially after the repair. Using PCR and DNA sequencing, exon 5 of the p53 gene was sequenced in the lymphocytes from the donors with the lowest and highest residual damage. No such mutation was found. Mouse lymphoma L5178Y cells carrying the p53 mutation in exon 5 were included as a reference. These cells were found to be less sensitive toward the H2O2-induced DNA damage, and they were also found to have a rather low DNA repair capacity. The demonstrated variation in H2O2-induced DNA damage and DNA repair capacity between the cultures from the different subjects may be important from a risk assessment perspective, but is obviously not of decisive importance when it comes to the development of a routine assay for genotoxicity.  相似文献   

9.
Recently, we developed an improved comet assay protocol for evaluating single-strand break repair capacity (SSB-RC) in unstimulated cryopreserved human peripheral blood mononuclear cells (PBMCs). This methodology facilitates control of interexperimental variability [A.R. Trzeciak, J. Barnes, M.K. Evans, A modified alkaline comet assay for measuring DNA repair capacity in human populations. Radiat. Res. 169 (2008) 110-121]. The fast component of SSB repair (F-SSB-RC) was assessed using a novel parameter, the initial rate of DNA repair, and the widely used half-time of DNA repair. The slow component of SSB repair (S-SSB-RC) was estimated using the residual DNA damage after 60 min. We have examined repair of gamma-radiation-induced DNA damage in PBMCs from four age-matched groups of male and female whites and African-Americans between ages 30 and 64. There is an increase in F-SSB-RC with age in white females (P<0.01) and nonsignificant decrease in F-SSB-RC in African-American females (P=0.061). F-SSB-RC is lower in white females than in white males (P<0.01). There is a decrease in F-SSB-RC with age in African-American females as compared to white females (P<0.002) and African-American males (nonsignificant, P=0.059). Age, sex, and race had a similar effect on intercellular variability of DNA damage in gamma-irradiated and repairing PBMCs. Our findings suggest that age, sex, and race influence SSB-RC as measured by the alkaline comet assay. SSB-RC may be a useful clinical biomarker.  相似文献   

10.
The comet assay (single-cell gel electrophoresis, SCG) is widely accepted as an in vitro and in vivo genotoxicity test. Because of its demonstrated ability to detect various kinds of DNA damage and its ease of application, the technique is being increasingly used in human biomonitoring. However, the assessment of small genotoxic effects as typically obtained in biomonitoring may be limited by the different sources of assay variability and the lack of an optimal protocol with high sensitivity. To better characterize the suitability of the comet assay for biomonitoring, we are performing a comprehensive investigation on blood samples from smokers and non-smokers. Because tobacco smoke is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds, smokers should be a suitable study group with relevant mutagen exposure. Here, we report our results for the first sample of 20 healthy male smokers and 20 healthy male non-smokers. Baseline and benzo[a]pyrene diolepoxide (BPDE)-induced effects were analysed by two investigators using two image analysis systems. The study was repeated within 4 months. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline and BPDE-induced DNA damage was comparatively analysed. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. None of these approaches revealed significant differences between smokers and non-smokers. Although more data is needed for a final conclusion, this study indicates some limitations of the comet assay with regard to the detection of DNA damage induced by environmental mutagens in peripheral blood cells.  相似文献   

11.
Benzo[a]pyrene (BaP) is a ubiquitously distributed environmental pollutant that induces deoxyribonucleic acid (DNA) damage. The inducible heat shock protein (HspA1A) can function as a molecular chaperone; however, its role in DNA repair remains largely unknown. In the present study, human bronchial epithelial cells (16HBE) stably transfected with plasmids carrying HspA1A gene or shRNAs against HspA1A were treated with BaP. DNA damage levels of the cells were evaluated by comet assay. Results suggest that HspA1A could protect cells against DNA damage and facilitate the decrease of DNA damage levels during the first 2 h of DNA repair. DNA repair capacity (DRC) of Benzo(a)pyrene diol epoxide (BPDE)-DNA adducts was evaluated by host cell reactivation assay in the stable 16HBE cells transfected with luciferase reporter vector PCMVluc pretreated with BPDE. Compared with control cells, cells overexpressing HspA1A showed higher DRC (p < 0.01 at 10 μM BPDE and p < 0.05 at 20 μM BPDE, respectively), while knockdown of HspA1A inhibited DNA repair (p < 0.05 at 10 μM BPDE). Moreover, casein kinase 2 (CK2) was shown to interact with HspA1A by mass spectrometry and co-immunoprecipitation assays. The two proteins were co-localized in the cell nucleus and perinuclear region during DNA repair, and were identified by confocal laser scanning microscope. In addition, cells overexpressing HspA1A showed an increased CK2 activity after BaP treatment compared with control cells (p < 0.01). Our results suggest that HspA1A facilitates DNA repair after BaP treatment. HspA1A also interacts with CK2 and enhances the kinase activities of CK2 during DNA repair.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-013-0454-7) contains supplementary material, which is available to authorized users.  相似文献   

12.
Cancer risk and radiation sensitivity are often associated with alterations in DNA repair, cell cycle, or apoptotic pathways. Interindividual variability in mutagen or radiation sensitivity and in cancer susceptibility may also be traced back to polymorphisms of genes affecting e.g. DNA repair capacity. We studied possible associations between 70 polymorphisms of 12 DNA repair genes with basal and initial DNA damage and with repair thereof. We investigated DNA damage induced by ionizing radiation in lymphocytes isolated from 177 young lung cancer patients and 169 cancer-free controls. We also sought replication of our findings in an independent sample of 175 families (in total 798 individuals). DNA damage was assessed by the Olive tail moment (OTM) of the comet assay. DNA repair capacity (DRC) was determined for 10, 30 and, 60 min of repair.Genes involved in the single-strand-repair pathway (SSR; like XRCC1 and MSH2) as well as genes involved in the double-strand-repair pathway (DSR; like RAD50, XRCC4, MRE11 and ATM) were found to be associated with DNA damage. The most significant association was observed for marker rs3213334 (p = 0.005) of XRCC1 with basal DNA damage (B), in both cases and controls. A clear additive effect on the logarithm of OTM was identified for the marker rs1001581 of the same LD-block (p = 0.039): BCC = −1.06 (95%-CI: −1.16 to −0.96), BCT = −1.02 (95%-CI: −1.11 to −0.93) and BTT = −0.85 (95%-CI: −1.01 to −0.68). In both cases and controls, we observed significantly higher DNA basal damage (p = 0.007) for carriers of the genotype AA of marker rs2237060 of RAD50 (involved in DSR). However, this could not be replicated in the sample of families (p = 0.781). An alteration to DRC after 30 min of repair with respect to cases was observed as borderline significant for marker rs611646 of ATM (involved in DSR; p = 0.055), but was the most significant finding in the sample of families (p = 0.009).Our data indicate that gene variation impacts measurably on DNA damage and repair, suggesting at least a partial contribution to radiation sensitivity and lung cancer susceptibility.  相似文献   

13.
Karashdeep Kaur 《Biomarkers》2020,25(6):498-505
Abstract

Pesticide-induced DNA damage is primarily repaired by base excision repair (BER) pathway. However, polymorphism in DNA repair genes may modulate individual’s DNA repair capacity (DRC) leading to increased genotoxicity and adverse health effects. Our first study in North-West Indian population aimed to evaluate the impact of OGG1 rs1052133 (Ser326Cys; C1245G), XRCC1 rs1799782 (Arg194Trp; C26304T) and XRCC1 rs25487 (Arg399Gln; G28152A) polymorphisms on the modulation of pesticide-induced DNA damage in a total of 450 subjects (225 pesticide-exposed agricultural workers and 225 age- and sex-matched controls). DNA damage was estimated by alkaline comet assay using silver-staining method. Genotyping was carried out by PCR-RFLP using site-specific restriction enzymes. Mann-Whitney U-test revealed elevation in DNA damage parameters (p?<?0.01) in pesticide-exposed agricultural workers than controls. Chi-square test showed significant (p?<?0.05) differences in the XRCC1 Arg194Trp (C26304T) and Arg399Gln (G28152A) genotypes among two groups. Multivariate logistic-regression analysis revealed that heterozygous genotypes of OGG1 rs1052133 (326Ser/Cys; 1245CA), XRCC1 rs1799782 (194Arg/Trp; 26304CT) and XRCC1 rs25487 (399Arg/Gln; 2815GA) were positively associated (p?<?0.05) with elevated DNA damage parameters in pesticide-exposed agricultural workers. Our results strongly indicate significant positive association of variant OGG1 and XRCC1 genotypes with reduced DRC and higher pesticide-induced DNA damage in North-West Indian agricultural workers.  相似文献   

14.
The influence of occupational exposure to environmental carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) on DNA damage detected in lymphocytes of exposed people (city policemen) was studied. The cellular susceptibility to the induction of the DNA damage and the repair capacity of exposed donors are presented in comparison with matched controls. Monitoring was performed and blood samples (164 donors) were collected in Prague, Czech Republic, during the winter and summer seasons. The single-cell gel electrophoresis (SCGE) assay with an internal standard was applied to evaluate the DNA damage. A challenging dose of 2 Gy of X-rays was used to study cellular capacities. In the results of studies of the DNA damage induced in vivo or as an immediate response to the challenging treatment no significant difference was found between exposed and unexposed subgroups. The percentage of non-repaired X-ray-induced DNA damage (residual damage, RD) overall in both seasons was significantly higher in lymphocytes of policemen exposed to c-PAHs than in matched controls (RDT-DNA, %DNA in the comet tail: winter 36.4 ± 22.1 versus 22.7 ± 10.8, p < 0.001; summer 47.7 ± 22.9 versus 34.7 ± 15.2, p < 0.001). The results suggest that occupational exposure to environmental c-PAHs significantly reduces the cellular capacity to repair the DNA damage induced by a challenging treatment. A significant decrease of repair efficiency in donors occupationally exposed to environmental c-PAHs was also observed when subgroups were stratified according to smoking history. In conclusion, our results suggest that environmental exposure to c-PAHs affects the cellular repair processes and can lead to harmful effects hazardous to human health.  相似文献   

15.
Oxidative stress, or the production of oxygen-centered free radicals, has been hypothesized as the major source of DNA damage that can lead to a variety of diseases including cancer. It is known that 8-hydroxy-deoxyguanosine (8-oxo-dG) is a useful biomarker of oxidative DNA damage. Our recent data showed that JWA, initially being cloned as a novel cell differentiation-associated gene, was also actively responsive to environmental stressors, such as heat-shock, oxidative stress and so on. In the present study, we have applied a modified comet assay and bacterial repair endonucleases system (endonuclease III and formamidopyrimidine glycosylase) to investigate if JWA is involved in hydrogen peroxide (H2O2)-induced DNA damage and repair in K562 and MCF-7 cells, and to demonstrate if the damage is associated with 8-oxo-dG. The results from the comet assay have shown that the average tail length and the percentage of the cells with DNA tails are greatly induced by H2O2 treatment and further significantly enhanced by the post-treatment of repair endonucleases. The H2O2-induced 8-oxo-dG formation in K562 and MCF-7 cells is dose-dependent. In addition, the data have clearly demonstrated that JWA gene expression is actively induced by H2O2 treatment in K562 and MCF-7 cells. The results suggest that JWA can be regulated by oxidative stress and is actively involved in the signal pathways of oxidative stress in the cells.  相似文献   

16.
Preservation of human blood cells for DNA damage analysis with the comet assay conventionally involves the isolation of mononuclear cells by centrifugation, suspension in freezing medium and slow freezing to ?80 °C—a laborious process. A recent publication (Al‐Salmani et al. Free Rad Biol Med 2011; 51: 719–725) describes a simple method in which small volumes of whole blood are frozen to ?20 or ?80 °C; on subsequent thawing, the comet assay is performed, with no indication of elevated DNA strand breakage resulting from the rapid freezing. However, leucocytes in whole blood (whether fresh or frozen) are abnormally resistant to damage by H2O2, and so a common test of antioxidant status (resistance to strand breakage by H2O2) cannot be used. We have refined this method by separating the leucocytes from the thawed blood; we find that, after three washes, the cells respond normally to H2O2. In addition, we have measured specific endogenous base damage (oxidized purines) in the isolated leucocytes, using the enzyme formamidopyrimidine DNA glycosylase. In a study of blood samples from 10 subjects, H2O2 sensitivity and endogenous damage—both reflecting the antioxidant status of the cells—correlated significantly. This modified approach to sample collection and storage is particularly applicable when the available volume of blood is limited and has great potential in biomonitoring and ecogenotoxicology studies where samples are obtained in the field or at sites remote from the testing laboratory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The host-cell reactivation assay (HCRA) is a functional assay that allows the identification of the genes responsible for DNA repair-deficient syndromes, such as Xeroderma pigmentosum, by cross-complementation experiments. It has also been used in molecular epidemiology studies to correlate the low nucleotide excision repair pathway function in peripheral blood lymphocytes with an increased risk of bladder, head and neck, skin and lung cancers. Herein, we present the technical validation of a newly modified HCRA, where nucleofection is used for the transfection of the pmaxGFP plasmid into cryopreserved peripheral blood lymphocytes (PBLs) or lymphoblastoid cell lines. In each sample, 20-24h after transfection, the relative DNA repair capacity (DRC) was quantified by flow cytometry, comparing the transfection efficiency of nucleoporated cells with undamaged plasmid to those transfected with UV-light damaged plasmid in the seven cell lines that were characterized by different DNA repair phenotypes. Dead cells were excluded from the analysis. We observed a high reproducibility of the relative DRC, transfection efficiency and cell viability. The inter-experimental normalization of the flow cytometry resulted in an increased data accuracy and reproducibility. The amount of cells required for each transfection reaction was reduced fourfold, without affecting the final relative DRC. Furthermore, our HCRA demonstrated strong discrimination power in the UV-light dose-response, both in lymphoblastoid cell lines and cryopreserved PBLs. We also observed a strong correlation of the relative DRC data, when samples were measured against two independent batches of both damaged and undamaged plasmid DNA. The relative DRC variable shows a normal distribution when analyzed in the cryopreserved PBLs from a cohort of 35 lung cancer patients and a 5.59-fold variation in the relative DRC is identified among our patients. The mitotic dynamic was discarded as a confounding factor for the relative DRC measurement in this cohort of patients. The results indicate that our method is highly sensitive, reliable and reproducible, and thus, it suitable for population-based studies to quantify in vitro DNA-repair deficiencies.  相似文献   

18.
This study was performed to investigate the effect of storing blood samples by freezing on selected biomarkers and possible implications for biomonitoring. Comparative measurements were performed in order to investigate the use of cryopreserved vs. freshly separated peripheral mononuclear blood cells (PMBC) obtained from donor blood. Measurements of DNA-repair, mutant frequency, and subcell content were included. Samples for large biomonitoring studies are usually taken from study groups within a short timeperiod of days/weeks and storing of study material for later analysis can be necessary. We measured the DNA repair activity as dimethylsulfate induced unscheduled DNA synthesis (UDS) in PMBC incubated with either autologous plasma or fetal bovine serum (FBS). Comparison of the hprt mutant frequency by the T cell cloning assay was made in parallel. Finally the content of B/T-lymphocytes and monocytes was measured in phytohemaglutinin (PHA)-stimulated cultures at different time intervals. The results showed a higher DNA repair activity in cryopreserved samples compared with fresh samples. We also found differences in mutant frequencies with higher values in fresh samples. A significant correlation of frequencies was seen when comparing fresh with cryopreserved samples. Furthermore we recommend fresh human plasma used in UDS incubation media.  相似文献   

19.
The effects of pulsed electric fields of low frequency (50 Hz) on DNA of human lymphocytes were investigated. The influence of additional external factors, such as hydrogen peroxide (H2O2) and γ-irradiation, as well as the repair efficiency in these lymphocytes, was also evaluated. The comet assay, a very sensitive and rapid method for detecting DNA damage at the single cells level was the method used. A significant amount of damage was observed after exposure to the electric fields, compared to the controls. After 2 h incubation at 37°C, a proportion of damage was repaired. H2O2 and γ-irradiation increased the damage to lymphocytes exposed to pulsed electric fields according to the dose used, while the amount of the repair was proportional to the damage.  相似文献   

20.
The comet assay (single-cell gel electrophoresis, SCG) is widely accepted as an in vitro and in vivo genotoxicity test. Because of its demonstrated ability to detect various kinds of DNA damage and its ease of application, the technique is being increasingly used in human biomonitoring. However, the assessment of small genotoxic effects as typically obtained in biomonitoring may be limited by the different sources of assay variability and the lack of an optimal protocol with high sensitivity. To better characterize the suitability of the comet assay for biomonitoring, we are performing a comprehensive investigation on blood samples from smokers and non-smokers. Because tobacco smoke is a well-documented source of a variety of potentially mutagenic and carcinogenic compounds, smokers should be a suitable study group with relevant mutagen exposure. Here, we report our results for the first sample of 20 healthy male smokers and 20 healthy male non-smokers. Baseline and benzo[a]pyrene diolepoxide (BPDE)-induced effects were analysed by two investigators using two image analysis systems. The study was repeated within 4 months. Furthermore, the influence of a repair inhibitor (aphidicolin, APC) on baseline and BPDE-induced DNA damage was comparatively analysed. In all experiments, a reference standard (untreated V79 cells) was included to correct for assay variability. None of these approaches revealed significant differences between smokers and non-smokers. Although more data is needed for a final conclusion, this study indicates some limitations of the comet assay with regard to the detection of DNA damage induced by environmental mutagens in peripheral blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号