首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cultivars of red clover (Trifolium pratense L.), an important forage crop in temperate regions, are often characterised by an unsatisfactory level of seed yield, leading to high production costs. This complex trait is influenced by many components and negatively correlated with other important traits, such as forage yield or persistence. Therefore, seed yield has proven to be difficult to improve. Thus, the objectives of this study were to assess association among seed yield components and to provide the basis for identifying molecular markers linked to QTLs for seed yield components to assist breeding for improved red clover cultivars. A total of 42 SSR and 216 AFLP loci were used to construct a molecular linkage map with a total map length of 444.2 cM and an average distance between loci of 1.7 cM. A total of 38 QTLs were identified for eight seed yield components. The traits seed number per plant, seed yield per head, seed number per head, head number per plant and percent seed set were highly correlated with seed yield per plant, and QTLs for several of these traits were often detected in the same genome region. Head number per plant may present a particularly useful character for the improvement of seed yield since it can easily be determined before seed maturity. In addition, two genome regions containing four or five QTLs for different seed yield components, respectively, were identified representing candidate regions for further characterisation of QTLs. This study revealed several key components which may facilitate further improvement of seed yield. The QTLs identified represent an important first step towards marker-assisted breeding in red clover.  相似文献   

2.
AFLP and SSR DNA markers were used to construct a linkage map in the coconut (Cocos nucifera L.; 2n = 32) type Rennell Island Tall (RIT). A total of 227 markers were arranged into 16 linkage groups. The total genome length corresponded to 1971 cM for the RIT map, with 5-23 markers per linkage group. QTL analysis for yield characters in two consecutive sampling periods identified nine loci. Three and two QTLs were detected for number of bunches and one and three QTLs for number of nuts. The correlation of trait values between characters and evaluation periods is partially reflected in identical QTLs. The QTLs represent characters that are important in coconut breeding. The cosegregation of markers with these QTLs provides an opportunity for marker-assisted selection in coconut breeding programmes.  相似文献   

3.
The identification of quantitative trait loci (QTLs) based on anchor markers, especially candidate genes that control a trait of interest, has been noted to increase the power of QTL detection. Since these markers can be scored as co-dominant data, they are also valuable for comparing and integrating the QTL linkage maps from diverse mapping populations. To estimate the position and effects of QTLs linked to oil yield traits in African oil palm, co-dominant microsatellites (SSR) and candidate gene-based sequence polymorphisms were applied to construct a linkage map for a progeny showing large differences in oil yield components. The progeny was genotyped for 97 SSR markers, 93 gene-linked markers, and 12 non-gene-linked SNP markers. From these, 190 segregating loci could be arranged into 31 linkage groups while 12 markers remained unmapped. Using the single marker linkage, interval mapping and multiple QTL methods, 16 putative QTLs on seven linkage groups affecting important oil yield related traits such as fresh fruit bunch yield (FFB), ratio of oil per fruit (OF), oil per bunch (OB), fruit per bunch (FB) and wet mesocarp per fruit (WMF) could be identified in the segregating population with estimated values for explained variance ranging from 12.4 % to 54.5 %. Markers designed from some candidate genes involved in lipid biosynthesis were found to be mapped near significant QTLs for various economic yield traits. Associations between QTLs and potential candidate genes are discussed.  相似文献   

4.
Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750?kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6?cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059?cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24?%. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.  相似文献   

5.
An advanced backcross population between an accession of Oryza rufipogon (IRGC 105491) and the U.S. cultivar Jefferson (Oryza sativa ssp. japonica) was developed to identify quantitative trait loci (QTLs) for yield, yield components and morphological traits. The genetic linkage map generated for this population consisted of 153 SSR and RFLP markers with an average interval size of 10.3 cM. Thirteen traits were examined, nine of which were measured in multiple environments. Seventy-six QTLs above an experiment-wise significance threshold of P<0.01 (corresponding to an interval mapping LOD>3.6 or a composite interval mapping LOD>3.9) were identified. For the traits measured in multiple environments, 47% of the QTLs were detected in at least two environments. The O. rufipogon allele was favorable for 53% of the yield and yield component QTLs, including loci for yield, grains per panicle, panicle length, and grain weight. Morphological traits related to the domestication process and/or weedy characteristics, including plant height, shattering, tiller type and awns, were found clustered on chromosomes 1 and 4. Comparisons to previous studies involving wild x cultivated crosses revealed O. rufipogon alleles with stable effects in multiple genetic backgrounds and environments, several of which have not been detected in studies between Oryza sativa cultivars, indicating potentially novel alleles from O. rufipogon. Some O. rufipogon-derived QTLs, however, were in similar regions as previously reported QTLs from Oryza sativa cultivars, providing evidence for conservation of these QTLs across the Oryza genus. In addition, several QTLs for grain weight, plant height, and flowering time were localized to putative homeologous regions in maize where QTLs for these traits have been previously reported, supporting the hypothesis of functional conservation of QTLs across the grasses.  相似文献   

6.
Drought is one of the major abiotic stresses, which hampers the production of rice worldwide. Informative molecular markers are valuable tools for improving the drought tolerance in various varieties of rice. The present study was conducted to evaluate the informative simple sequence repeat (SSR) markers in a diverse set of rice genotypes. The genetic diversity analyses of the 83 studied rice genotypes were performed using 34 SSR markers closely linked to the major quantitative trait loci (QTLs) of grain yield under drought stress (qDTYs). In general, our results indicated high levels of polymorphism. In addition, we screened these rice genotypes at the reproductive stage under both drought stress and nonstressful conditions. The results of the regression analysis demonstrated a significant relationship between 11 SSR marker alleles and the plant paddy weight under stressful conditions. Under the nonstressful conditions, 16 SSR marker alleles showed a significant correlation with the plant paddy weight. Finally, four markers (RM279, RM231, RM166, and RM231) demonstrated a significant association with the plant paddy weight under both stressful and nonstressful conditions. These informative-associated alleles may be useful for improving the crop yield under both drought stress and nonstressful conditions in breeding programs.  相似文献   

7.
Tea plant (Camellia sinensis) is a major beverage crop across the world. To uncover the genetic controls of agronomic traits and facilitate marker-assisted breeding (MAB) in tea plant, we constructed a saturated SSR-based linkage map using an F1 population derived from the crossing of ‘Longjin43’ × ‘Baihaozao’. A total of 483 SSR markers, consisting of 117 novel loci, 129 transferred from other tea plant maps, and 237 previously mapped, were successfully integrated into a new consensus map. The map has 15 linkage groups, covering 1226.2 cM in total with an average marker distance of 2.5 cM. The 126 markers in common enabled us to align this map to the reference genetic maps of tea plant. Phenotype data were collected in 2014 and 2015 for five traits: timing of spring bud flush (TBF), young shoot color (YSC), mature leaf length (MLL), mature leaf width (MLW), and leaf shape index (LSI, i.e., MLL/MLW). QTL analyses were performed for the five traits using the new consensus map and 15 QTLs were identified. The SSR markers, linkage map, and QTLs reported here are useful resources for future QTL mining, identification of causal genes, and MAB in tea plant.  相似文献   

8.
Introgression lines population was effectively used in mapping quantitative trait loci (QTLs), identifying favorable genes, discovering hidden genetic variation, evaluating the action or interaction of QTLs in multiple conditions and providing the favorable experimental materials for plant breeding and genetic research. In this study, an advanced backcross and consecutive selfing strategy was used to develop introgression lines (ILs), which derived from an accession of Oryza rufipogon Griff. collected from Yuanjiang County, Yunnan Province of China, as the donor, and an elite indica cultivar Teqing (O. sativa L.), as the recipient. Introgression segments from O. rufipogon were screened using 179 polymorphic simple sequence repeats (SSR) markers in the genome of each IL. Introgressed segments carried by the introgression lines population contained 120 ILs covering the whole O. rufipogon genome. The mean number of homozygous O. rufipogon segments per introgression line was about 3.88. The average length of introgressed segments was approximate 25.5 cM, and about 20.8% of these segments had sizes less than 10 cM. The genome of each IL harbored the chromosomal fragments of O. rufipogon ranging from 0.54% to 23.7%, with an overall average of 5.79%. At each locus, the ratio of substitution of O. rufipogon alleles had a range of 1.67-9.33, with an average of 5.50. A wide range of alterations in morphological and yield-related traits were also found in the introgression lines population. Using single-point analysis, a total of 37 putative QTLs for yield and yield components were detected at two sites with 7%-20% explaining the phenotypic variance. Nineteen QTLs (51.4%) were detected at both sites, and the alleles from O. rufipogon at fifteen loci (40.5%) improved the yield and yield components in the Teqing background. These O. rufipogon-O, sativa introgression lines will serve as genetic materials for identifying and using favorable genes from common wild rice.  相似文献   

9.
The productivity of sorghum is mainly determined by quantitative traits such as grain yield and stem sugar-related characteristics. Substantial crop improvement has been achieved by breeding in the last decades. Today, genetic mapping and characterization of quantitative trait loci (QTLs) is considered a valuable tool for trait enhancement. We have investigated QTL associated with the sugar components (Brix, glucose, sucrose, and total sugar content) and sugar-related agronomic traits (flowering date, plant height, stem diameter, tiller number per plant, fresh panicle weight, and estimated juice weight) in four different environments (two locations) using a population of 188 recombinant inbred lines (RILs) from a cross between grain (M71) and sweet sorghum (SS79). A genetic map with 157 AFLP, SSR, and EST-SSR markers was constructed, and several QTLs were detected using composite interval mapping (CIM). Further, additive × additive interaction and QTL × environmental interaction were estimated. CIM identified more than five additive QTLs in most traits explaining a range of 6.0–26.1% of the phenotypic variation. A total of 24 digenic epistatic locus pairs were identified in seven traits, supporting the hypothesis that QTL analysis without considering epistasis can result in biased estimates. QTLs showing multiple effects were identified, where the major QTL on SBI-06 was significantly associated with most of the traits, i.e., flowering date, plant height, Brix, sucrose, and sugar content. Four out of ten traits studied showed a significant QTL × environmental interaction. Our results are an important step toward marker-assisted selection for sugar-related traits and biofuel yield in sorghum.  相似文献   

10.
Breeding a model plant that encompasses individual traits thought to enhance yield potential, known as ideotype breeding, has traditionally focused on phenotypic selection of plants with desirable morphological traits. Broadening this breeding method to the molecular level through the use of molecular markers would avoid the environmental interactions associated with phenotypic selection. A population of 110 F5 recombinant inbred lines (RILs), derived from the cross between WO3391 and 'OAC Speedvale', was used to develop a genetic linkage map consisting of 105 random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and sequence-tagged site (STS) markers. The map has a total length of 641 cM distributed across 8 linkage groups (LGs). Five of them were aligned on the core linkage map of bean. Twenty-one quantitative trait loci (QTLs) were identified over three environments for eight agronomic and architectural traits previously defined for a bean (Phaseolus vulgaris L.) ideotype. The QTLs were mapped to seven LGs with several regions containing QTLs for multiple traits. At least one QTL was located for each trait and a maximum of four were associated with lodging. Total explained phenotypic variance ranged from 10.6% for hypocotyl diameter to 45.4% for maturity. Some of the QTLs identified will be useful for early generation selection of tall, upright, high-yielding lines in a breeding program.  相似文献   

11.
Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8-21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8-47 in the former and 12-40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15-57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs.  相似文献   

12.
Wild germplasm of domesticated crops is a source of genetic variation little utilized in breeding programs. Interspecific crosses can potentially uncover novel gene combinations that can be important for quantitative trait analysis. The combined use of wide crosses and genetic maps of chromosomal regions associated with quantitative traits can be used to broaden the genetic basis of rice breeding programs. Oryza glumaepatula is a diploid (AA genome) wild rice species native from South and Central America. A genetic map was constructed with 162 PCR-based markers (155 microsatellite and 7 STS markers) using a backcross population derived from the cross O. glumaepatula, accession RS-16 from the Brazilian Amazon Region x O. sativa BG-90-2, an elite rice inbred line. The map included 47 new SSR markers developed from an O. glumaepatula genomic library enriched for AG/TC sequences. All SSR markers were able to amplify the O. sativa genome, indicating a high degree of SSR flanking region conservation between O. glumaepatula and O. sativa species. The map covered 1500.4 cM, with an average of one marker every 10 cM. Despite some chromosomes being more densely mapped, the overall coverage was similar to other maps developed for rice. The advantage to construct a SSR-based map is to permit the combination of the speed of the PCR reaction, and the codominant nature of the SSR marker, facilitating the QTL analysis and marker assisted selection for rice breeding programs.  相似文献   

13.
水稻籼粳交DH群体收获指数及源库性状的QTL分析   总被引:2,自引:0,他引:2  
以 1个水稻籼粳交 (圭 6 30 0 2 4 2 8)来源的DH群体为材料 ,利用 1张含有 2 32个标记的RFLP连锁图谱和基于混合线性模型的定位软件QTLMapper1 0对水稻收获指数及生物量、籽粒产量、库容量和株高 5个性状进行QTL分析 ,共检测到 2 1个主效应QTLs和 9对上位性互作位点。其中 ,控制籽粒产量的 3个QTLs合计贡献率为 4 2 % ,LOD值为 7 10 ;这 3个QTLs或者与收获指数的QTL同位 ,或者与生物量的QTL同位 ,且加性效应的方向一致 ,从而揭示了“籽粒产量 =生物量×收获指数”的遗传基础所在。控制收获指数的 4个QTLs合计贡献率为 4 6 % ,LOD值为 10 3;控制生物量的 4个QTLs合计贡献率为 6 4 % ,LOD值为 14 0 9;收获指数的 4个QTLs与生物量的 4个QTLs均不同位。因此 ,通过基因重组 ,可能实现控制收获指数和生物量的增效基因的聚合 ,由此获得收获指数和生物量“双高”的基因型。检测到 5个株高QTLs,其合计贡献率为 6 4 % ,LOD值为 11 6 2 ;其中 ,有 3个效应较小的QTLs与生物量、库容量和 或籽粒产量QTLs同位 ,且同位QTLs的加性效应方向一致 ;未发现株高QTLs与收获指数QTLs的同位性。由此表明 ,株高与“源 流 库”概念中的“源”和“库”在遗传上有一定程度的关联 ,而与“流”无关联。此外还发现 ,在上述同位性QTL  相似文献   

14.
Asiatic cotton(Gossypium arboreum L.) is an Old World cultivated cotton species.The sinense race was planted extensively in China.Due to the advances in spinning technology during the last century,the species was replaced by the New World allotetraploid cotton G.hirsutum L.Gossypium arboreum is still grown in India and Pakistan and also used as an elite in current cotton breeding programs.In addition,G.arboreum serves as a model for genomic research in Gossypium.In the present study,we generated an A-genome diploid cotton intraspecific genetic map including 264 SSR loci with three morphological markers mapped to 1 3 linkage groups.The map spans 2,508.71 cM with an average distance of 9.4 cM between adjacent loci.A population containing 1 76 F2:3 families was used to perform quantitative trait loci(QTL)mapping for 17 phenotypes using Multiple QTL Model(MQM)of MapQTL ver 5.0.Overall,108 QTLs were detected on 13 chromosomes.Thirty-one QTLs for yield and its components were detected in the F2 population.Forty-one QTLs for yield and its components were detected in the F2:3 families with a total of 43 QTLs for fiber qualities.Two QTLs for seed cotton weight/plant and lint index and three QTLs for seed index were consistently detected both in F2 and F2:3.Most QTLs for fiber qualities and yields were located at the same interval or neighboring intervals.These results indicated that the negative correlation between fiber qualities and yield traits may result from either pleiotropic effect of one gene or linkage effects of multiple closely linked genes.  相似文献   

15.
千粒重是油菜重要的产量相关性状之一,构建油菜遗传连锁图谱是研究其产量性状基因的前提。本研究利用小孢子培养技术,选育出了甘蓝型油菜大粒品系(G-42)和小粒品系(7-9)的纯合DH系DH-G-42和DH-7-9,其千粒重分别为6.24 g和2.42 g,二者比值达2.58。以DH-G-42为母本、DH-7-9为父本,构建了含190个单株的F2遗传作图群体,利用SSR和SRAP标记技术绘制遗传连锁图谱,该图谱共包含20个连锁群,涉及128个SSR标记和100个SRAP标记,图谱总长1546.6cM,标记间平均图距为6.78cM。本研究共检测到3个与千粒重性状相关的QTL,分别位于A9和C1连锁群,其中qSW-A9-1和qSW-A9-2贡献率分别达到10.98%和27.45%,均可视为控制粒重的主效QTL。本研究为后续进行油菜千粒重性状QTL的精细定位分析、分子标记辅助选择育种及新基因的克隆等奠定了基础。  相似文献   

16.
玉米株高和穗位高遗传基础的QTL剖析   总被引:13,自引:0,他引:13  
兰进好  褚栋 《遗传》2005,27(6):925-934
利用玉米强优势组合(Mo17×黄早四)自交衍生的191个F2单株构建了由SSR和AFLP标记组成的分子连锁图谱.F2进一步自交产生的184个F2:3家系用于调查株高和穗位高的表型值.采用基于混合线性模型的复合区间作图法和相应的作图软件QTLmapper/V2.0,分别定位了7个株高和6个穗位高QTL;检测到18对控制株高和13对控制穗位高的上位性效应位点;同时发现了与环境存在显著互作的6个株高和8个穗位高单位点标记区域以及4对株高和4对穗位高上位性效应区域.分析了各种遗传因素在株高和穗位高遗传基础中的相对作用大小,指出了加性、显性和上位性是玉米株高和穗位高的重要遗传基础.并对所定位的QTL的真实性、株高和穗位高的关系以及研究结果对分子育种的启示予以讨论.  相似文献   

17.
对大豆的蛋白质含量和脂肪含量进行QTL定位,可为其分子标记辅助育种提供依据。以回交导入系群体中黄13×中黄20的BC2F5的100个家系为材料,分析群体的SSR标记多态性,采用近红外光谱分析技术测定群体蛋白质含量和脂肪含量。构建了一张涵盖大豆20个连锁群、总长为948.01 c M、平均遗传距离为8.78 c M、包含108个SSR标记的大豆遗传连锁图谱。共检测到与蛋白质含量相关的QTL 5个,与脂肪含量相关的QTL 9个,其中Satt445~Sat_303连续2年被检测到与脂肪含量相关,Satt445~Sat_303与Satt543~Satt574均被检测到与蛋白质含量和脂肪含量相关,Sat_389~Satt590、Satt238~Satt388及Satt685~Sat_381均与脂肪含量相关。  相似文献   

18.
Tobacco (Nicotiana tabacum L., 2n = 48) is an important agronomic crop and model plant. Flue-cured tobacco is the most important type and accounts for approximately 80 % of tobacco production worldwide. The low genetic diversity of flue-cured tobacco impedes the construction of a high-density genetic linkage map using simple sequence repeat (SSR) markers and warrants the exploitation of single nucleotide polymorphic (SNP) markers from genomic regions. In this article, initially using specific locus-amplified fragment sequencing, we discovered 10,891 SNPs that were subsequently used as molecular markers for genetic map construction. Combined with SSR markers, a final high-density genetic map was generated containing 4215 SNPs and 194 SSRs distributed on 24 linkage groups (LGs). The genetic map was 2662.43 cM in length, with an average distance of 0.60 cM between adjacent markers. Furthermore, by mapping the SNP markers to the ancestral genomes of Nicotiana tomentosiformis and Nicotiana sylvestris, a large number of genome rearrangements were identified as occurring after the polyploidization event. Finally, using this novel integrated map and mapping population, two major quantitative trait loci (QTLs) were identified for flue-curing and mapped to the LG6 of tobacco. This is the first report of SNP markers and a SNP-based linkage map being developed in tobacco. The high-density genetic map and QTLs related to tobacco curing will support gene/QTL fine mapping, genome sequence assembly and molecular breeding in tobacco.  相似文献   

19.
Early bolting of Chinese cabbage (Brassica rapa L.) during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs. In order to analyze the genetic basis of bolting traits, a genetic map of B. rapa was constructed based on amplified fragment-length poiymorphism (AFLP), sequence-related amplified poiymorphism (SRAP), simple sequence repeat (SSR), random amplification of polymorphic DNA (RAPD), and isozyme markers. Marker analysis was carried out on 81 double haploid (DH) lines obtained by microspore culture from F1 progeny of two homozygous parents: B. rapa L. ssp. pekinensis (BY) (an extra-early bolting Chinese cabbage line) and B. rapa L. ssp. rapifera (MM) (an extra-late bolting European turnip line). A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43 RAPDs and 14 isozymes were used to construct a linkage map with 10 linkage groups covering 882 cM with an average distance of 2.71 cM between loci. The bolting trait of each DH line was evaluated by the bolting index under controlled conditions. Quantitative trait loci (QTL) analysis was conducted using multiple QTL model mapping with MapQTL5.0 software. Eight QTLs controlling bolting resistance were identified. These QTLs, accounting for 14.1% to 25.2% of the phenotypic variation with positive additive effects, were distributed into three linkage groups. These results provide useful information for molecular marker-assisted selection of late bolting traits in Chinese cabbage breeding programs.  相似文献   

20.
Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between ‘KenC-8’ and ‘N53-2’, two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64–17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号