首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
病毒的装配是病毒复制和增殖过程中的一个重要步骤,它不是一个简单的静态的结构生物学问题,而是一个综合的动态的过程。它至少包括了下列几个问题:1.病毒的衣壳蛋白亚基是如何互相识别和装配成病毒衣壳的,是什么机制来控制这一过程的?2.病毒的基因组(DNA或R...  相似文献   

2.
曹虎 《生物学通报》1994,29(10):11-11
反转录病毒载体系统曹虎(江苏省东海县教育局222300)反转录病毒是一种RNA病毒,由糖蛋白外壳、两条RNA链和含有反转录酶的核心蛋白组成。当包着RNA链的核心蛋白进入宿主细胞后。反转录酶启动,以病毒RNA链为模板,反转录出单链DNA,继而生成双链D...  相似文献   

3.
甘薯病毒研究进展   总被引:2,自引:0,他引:2  
甘薯病毒研究进展孟清,张鹤龄(内蒙古大学生物系,呼和浩特010021)ResearchAdvancesinSweetPotatoVirusesMengQing;ZhangHeling(BiologyDepartment,InnerMongoliaUn...  相似文献   

4.
真核藻类的病毒和病毒类粒子(VLPs)   总被引:12,自引:0,他引:12  
真核藻类的病毒和病毒类粒子(VLPs)赵以军石正丽(中国科学院水生生物研究所,武汉430072)(中国科学院武汉病毒研究所,武汉430071)VirusesandVirus-likePearticlesofEukaryoticAlgaeZhaoYij...  相似文献   

5.
在我国流行的脊髓灰质炎中发现脊灰病毒Ⅰ型自然重组株   总被引:2,自引:0,他引:2  
方肇寅  郑渡平 《病毒学报》1993,9(3):195-202
  相似文献   

6.
7.
8.
9.
一种含有单链RNA的香菇球状病毒   总被引:6,自引:0,他引:6  
从生长不正常的香菇(Lentinus edodes(Berk.)Sing)菌株中分离到一种等轴对称含单链RNA的病毒颗粒。病毒颗粒在电镜下直径为33~34nm,在SDS-聚丙烯酰胺凝胶电泳中病毒外壳蛋白分子量为22000道尔顿。病毒核酸径DNase1和SI酶解试验及热变性紫外吸收曲线试验证明为单链RNA,在1.5%的琼脂糖凝胶电泳中,病毒核酸呈现一条带,分子量为2.38×10~6道尔顿。  相似文献   

10.
狂犬病病毒和狂犬病   总被引:1,自引:0,他引:1  
狂犬病病毒和狂犬病梁秀梅(内蒙呼伦贝尔大学021008)于潜(内蒙呼伦贝尔盟教研室021008)狂大病是狗、狼、猫、狐等动物之间的传染性疾病。人能得狂犬病,多数是因被疯犬咬伤或被染此病的猫抓伤所致。狂犬病病毒由狗的唾液或猫爪侵入人的身体,沿末梢神经而...  相似文献   

11.
报告了中国首次分离的辛德毕斯病毒XJ-160株的感染性全基因组cDNA克隆的构建与鉴定。利用RT—PCR方法获得覆盖病毒全长基因组的cDNA片段,以低拷贝质粒pBR322作为骨架,将基因组cDNA置于SP6RNA聚合酶启动子之后,基因组3’末端带有35个连续的A,通过DNA重组技术组装成病毒基因组全长cDNA克隆。该克隆可在大肠杆菌DH5a中稳定扩增。经体外转录,RNA转录体转染BHK-21细胞,细胞发生病变,恢复病毒滴度达到10^7~10^8PFU/ml。全基因组cDNA克隆构建过程中引入的沉默突变(8453位核苷酸由C变为T)产生XbaⅠ酶切位点作为遗传标记,在子代恢复病毒的基因组中稳定存在。从细胞病变的特征、BHK-21细胞的空斑形态、病毒的抗原性、病毒在细胞中的生长动力学特征以及对乳鼠的致病性等方面比较,恢复病毒和亲本病毒XJ-160没有显著区别,提示获得了具有感染性的XJ-160病毒全长cDNA克隆。该病毒感染性全基因组cDNA克隆可以作为反向遗传学系统,为进一步研究病毒复制和致病机制,以及开发相应的载体表达系统提供分子生物学工具。  相似文献   

12.
Li J  Zhu W  Wang H  Li J  Zhang Q  He Y  Li J  Fu J  Li D  Liang G 《PloS one》2012,7(3):e33007
We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPΔnsp4 and pVaXJ-GLucΔnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system. Sensitivity tests showed that the limit of detection (LOD) of this replicon-defective assay is between 1 and 10 PFU for Sindbis viruses. These results indicate that, with the help of the replicon-defective alphavirus detection technique, we can specifically, sensitively, and rapidly detect alphaviruses in tissue cultures. The detection technique constructed here may be well suited for use in clinical examination and epidemiological surveillance, as well as for rapid screening of potential viral biological warfare agents.  相似文献   

13.
辛德毕斯病毒复制子载体系统的构建   总被引:2,自引:1,他引:1  
To construct vector system of XJ-160 virus,a Sindbis virus isolated in China,recombinant vector pBRepXJ together with its helper plasmid pBR-H were derived from XJ-160 viral infectious clone pBR-XJ160 by overlap-PCR.To quantitatively and qualitatively verify the function of the replicon system,recombinant plasmids pSinRep-EGFP,pBRepXJ-EGFP,pSinRep-R and pBRepXJ-R were constructed by cloning report genes of enhanced green fluorescent protein(EGFP) or Renilla luciferase(R.luc) into pBRepXJ or pSinRep5,a comme...  相似文献   

14.
我国分离的XJ-90260病毒鉴定为西方马脑炎病毒   总被引:7,自引:0,他引:7  
XJ-90260病毒是从新疆乌苏县境内采集的赫坎按蚊中分离到的一株病毒,病毒的鉴定结果显示:XJ-90260病毒可引起BHK-21细胞病变,表现为圆缩,脱落;可引起Vero细胞病变,表现为圆缩,破碎,脱落;可以在C6/36细胞中增殖,但不引起细胞病变。对3日龄小白鼠2-3天致死,对3周龄小白鼠3-4天致死。该病毒株对酸、乙醚敏感,抵抗5-氟脱氧尿苷。病毒与甲病毒组特异性免疫腹水起反应,与乙型脑炎病毒及布尼亚病毒组特异性免疫腹水不反应。进一步的分子生物学鉴定表明,该毒株基因组3′非编码区(ntranslated region,UTR)核苷酸序列具有典型的西方马脑炎病毒特征,与标准西方马脑炎病毒的首次报导,有重要的流行病学意义。我国9省区,886份血清的流行病学调查显示,该病毒抗体阳性血清24份,阳性率为2.71%。其中新疆(8/157),河南(6/76)、甘肃(5/94)三省区抗体阳性数较多,占总阳性数的79.2%(19/24)。  相似文献   

15.
The ability to target antigen-presenting cells with vectors encoding desired antigens holds the promise of potent prophylactic and therapeutic vaccines for infectious diseases and cancer. Toward this goal, we derived variants of the prototype alphavirus, Sindbis virus (SIN), with differential abilities to infect human dendritic cells. Cloning and sequencing of the SIN variant genomes revealed that the genetic determinant for human dendritic cell (DC) tropism mapped to a single amino acid substitution at residue 160 of the envelope glycoprotein E2. Packaging of SIN replicon vectors with the E2 glycoprotein from a DC-tropic variant conferred a similar ability to efficiently infect immature human DC, whereupon those DC were observed to undergo rapid activation and maturation. The SIN replicon particles infected skin-resident mouse DC in vivo, which subsequently migrated to the draining lymph nodes and upregulated cell surface expression of major histocompatibility complex and costimulatory molecules. Furthermore, SIN replicon particles encoding human immunodeficiency virus type 1 p55(Gag) elicited robust Gag-specific T-cell responses in vitro and in vivo, demonstrating that infected DC maintained their ability to process and present replicon-encoded antigen. Interestingly, human and mouse DC were differentially infected by selected SIN variants, suggesting differences in receptor expression between human and murine DC. Taken together, these data illustrate the tremendous potential of using a directed approach in generating alphavirus vaccine vectors that target and activate antigen-presenting cells, resulting in robust antigen-specific immune responses.  相似文献   

16.
We have proposed a general algorithm for identification of potential immunoprotective domains (cassettes) on the envelope E2 polypeptide of alphaviruses (H. Grosfeld, B. Velan, M. Leitner, S. Cohen, S. Lustig, B.E. Lachmi, and A. Shafferman, J. Virol. 63:3416-3422, 1989). To assess the generality of our approach, we compared analogous E2 cassettes from Sindbis virus (SIN) and Semliki Forest virus (SFV), two alphaviruses which are philogenetically very remote. The antigenically distinct SFV E2 and SIN E2 cassettes exhibit comparable immunological characteristics. Most significantly, the SIN E2 LMN cassette cluster (E2 amino acids 297 to 352 fused to beta-galactosidase), like the analogous SFV E2 LMN cassettes, elicited high titers of antivirus antibodies in mice and proved to be highly effective in protection against lethal challenge. Mice immunized with SIN E2 LMN were completely protected against intracerebral challenge of 10 to 100 50% lethal doses of different neurovirulent SIN strains. Anti-SIN LMN antibodies, like anti-SFV LMN antibodies, lacked in vitro neutralizing activity, yet both exerted protection against homologous challenge upon transfer to mice. The two antibody preparations exhibited virus-specific complement-mediated cytolysis of cells infected with the homologous but not heterologous virus. These results suggest a possible mechanism for virus-specific E2 LMN-induced protection and demonstrate the generality of our methodology for deciphering immunogenic and protective domains in alphavirus systems. Results suggest also that the E2 LMN sequence of any given alphavirus should be considered as a component of a synthetic vaccine against that specific virus.  相似文献   

17.
bcl-2, the prototypic cellular antiapoptotic gene, decreases Sindbis virus replication and Sindbis virus-induced apoptosis in mouse brains, resulting in protection against lethal encephalitis. To investigate potential mechanisms by which Bcl-2 protects against central nervous system Sindbis virus infection, we performed a yeast two-hybrid screen to identify Bcl-2-interacting gene products in an adult mouse brain library. We identified a novel 60-kDa coiled-coil protein, Beclin, which we confirmed interacts with Bcl-2 in mammalian cells, using fluorescence resonance energy transfer microscopy. To examine the role of Beclin in Sindbis virus pathogenesis, we constructed recombinant Sindbis virus chimeras that express full-length human Beclin (SIN/beclin), Beclin lacking the putative Bcl-2-binding domain (SIN/beclinΔBcl-2BD), or Beclin containing a premature stop codon near the 5′ terminus (SIN/beclinstop). The survival of mice infected with SIN/beclin was significantly higher (71%) than the survival of mice infected with SIN/beclinΔBcl-2BD (9%) or SIN/beclinstop (7%) (P < 0.001). The brains of mice infected with SIN/beclin had fewer Sindbis virus RNA-positive cells, fewer apoptotic cells, and lower viral titers than the brains of mice infected with SIN/beclinΔBcl-2BD or SIN/beclinstop. These findings demonstrate that Beclin is a novel Bcl-2-interacting cellular protein that may play a role in antiviral host defense.  相似文献   

18.
Cell culture-adapted strains of Sindbis virus (SINV) initially attach to cells by the ability to interact with heparan sulfate (HS) through selective mutation for positively charged amino acid (aa) scattered in E2 glycoprotein (W. B. Klimstra, K. D. Ryman, and R. E. Johnston, J. Virol. 72: 7357–7366, 1998). Here we have further confirmed that interaction of E2 protein with HS is crucial for cellular infection of SINV based on the reverse genetic system of XJ-160 virus, a Sindbis-like virus (SINLV). Both SINV YN87448 and SINLV XJ-160 displayed similar infectivity on BHK-21, Vero, or C6/36 cells, but XJ-160 failed to infect mouse embryonic fibroblast (MEF) cells. The molecular mechanisms underlying the selective infectivity of XJ-160 were approached by substituting the E1, E2, or both genes of XJ-160 with that of YN87448, and the chimeric virus was denominated as XJ-160/E1, XJ-160/E2, or XJ-160/E1E2, respectively. In contrast to the parental XJ-160, all chimeric viruses became infectious to wild-type MEF cells (MEF-wt). While MEF-Ext −/− cells, producing shortened HS chains, were resistant not only to XJ-160, but also to YN87448 as well as the chimeric viruses, indicating that the inability of XJ-160 to infect MEF-wt cells likely due to its incompetent discrimination of cellular HS. Treatment with heparin or HS-degrading enzyme resulted in a substantial decrease in plaque formation by YN87448, XJ-160/E2, and XJ-160/E1E2, but had marginal effect on XJ-160 and XJ-160/E1, suggesting that E2 glycoprotein from YN87448 plays a more important role than does E1 in mediating cellular HS-related cell infection. In addition, the peptide containing 145–150 aa from E2 gene of YN87448 specifically bound to heparin, while the corresponding peptide from the E2 gene of XJ-160 essentially showed no binding to heparin. As a new dataset, these results clearly confirm an essential role of E2 glycoprotein, especially the domain of 145–150 aa, in SINV cellular infection through the interaction with HS.  相似文献   

19.
Venezuelan equine encephalitis virus (VEEV) is an important, naturally emerging zoonotic virus. VEEV was a significant human and equine pathogen for much of the past century, and recent outbreaks in Venezuela and Colombia (1995), with about 100,000 human cases, indicate that this virus still poses a serious public health threat. The live attenuated TC-83 vaccine strain of VEEV was developed in the 1960s using a traditional approach of serial passaging in tissue culture of the virulent Trinidad donkey (TrD) strain. This vaccine presents several problems, including adverse, sometimes severe reactions in many human vaccinees. The TC-83 strain also retains residual murine virulence and is lethal for suckling mice after intracerebral (i.c.) or subcutaneous (s.c.) inoculation. To overcome these negative effects, we developed a recombinant, chimeric Sindbis/VEE virus (SIN-83) that is more highly attenuated. The genome of this virus encoded the replicative enzymes and the cis-acting RNA elements derived from Sindbis virus (SINV), one of the least human-pathogenic alphaviruses. The structural proteins were derived from VEEV TC-83. The SIN-83 virus, which contained an additional adaptive mutation in the nsP2 gene, replicated efficiently in common cell lines and did not cause detectable disease in adult or suckling mice after either i.c. or s.c. inoculation. However, SIN-83-vaccinated mice were efficiently protected against challenge with pathogenic strains of VEEV. Our findings suggest that the use of the SINV genome as a vector for expression of structural proteins derived from more pathogenic, encephalitic alphaviruses is a promising strategy for alphavirus vaccine development.  相似文献   

20.
Semliki Forest virus (SFV) and Sindbis virus (SIN) are enveloped alphaviruses that enter cells via low-pH-triggered fusion in the endocytic pathway and exit by budding from the plasma membrane. Previous studies with cholesterol-depleted insect cells have shown that SFV requires cholesterol in the cell membrane for both virus fusion and efficient exit of progeny virus. An SFV mutant, srf-3, shows efficient fusion and exit in the absence of cholesterol due to a single point mutation in the E1 spike subunit, proline 226 to serine. We have here characterized the role of cholesterol in the entry and exit of SIN, an alphavirus quite distantly related to SFV. Growth, primary infection, fusion, and exit of SIN were all dramatically inhibited in cholesterol-depleted cells compared to control cells. Based on sequence differences within the E1 226 region between SFV, srf-3, and SIN, we constructed six SIN mutants with alterations within this region and characterized their cholesterol dependence. A SIN mutant, SGM, that had the srf-3 amino acid sequence from E1 position 224 to 235 showed increases of approximately 100-fold in infection and approximately 250-fold in fusion with cholesterol-depleted cells compared with infection and fusion of wild-type SIN. Pulse-chase analysis demonstrated that SGM exit from cholesterol-depleted cells was markedly more efficient than that of wild-type SIN. Thus, similar to SFV, SIN was cholesterol dependent for both virus entry and exit, and the cholesterol dependence of both steps could be modulated by sequences within the E1 226 region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号