首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 131 毫秒
1.
王满堂  赵志刚  周显辉  程栋梁 《广西植物》2018,38(10):1391-1398
生物量分配影响植物生长和繁殖,是植物生活史研究的重要内容。为了了解植物生活史性状对放牧的响应,该研究以青藏高原高寒草甸毒杂草展毛翠雀为对象,分析了放牧干扰对展毛翠雀的花期繁殖分配和性分配的影响。结果表明:放牧显著降低了展毛翠雀的总生物量、个体大小和繁殖投入; 放牧未改变展毛翠雀的营养部分与繁殖部分的等速生长关系,但显著增加了繁殖部分的生物量分配和总花数; 展毛翠雀的个体大小与总花数呈显著的正相关关系,但与性分配呈显著的负相关关系; 展毛翠雀的总花数与单花大小、单花的花瓣比例均表现出负相关关系,表明总花数与单花大小之间、总花数与单花的花瓣比例之间均存在权衡。因此,在放牧条件下,展毛翠雀的繁殖分配和性分配均表现出显著的可塑性。  相似文献   

2.
放牧对草原植物功能性状影响研究进展   总被引:1,自引:0,他引:1  
植物功能性状的表达和植被环境适应性相关,植物功能性状之间的权衡变化体现了植物在放牧胁迫下资源的重新整合和获取。本文总结了放牧干扰下植物功能性状表达的差异性,着重将放牧干扰与植物功能性状相结合,介绍了植物功能性状的变异来源是植物遗传特征与环境过滤相互协调的结果,归纳了放牧对植物营养性状、繁殖性状的影响,以及植物可以通过调整生存和繁殖策略以适应放牧干扰。本文集中于放牧对植物种群、群落和生态系统的影响。不同放牧干扰下植物功能性状的表达具有差异性,因此植物功能性状可作为解释种群生长和繁殖、群落构建过程和生态系统功能的指标。为使植物功能性状的研究更好地服务于草地生态环境,可依据植物功能性状筛选合理的草地抗牧物种;依据草地植物种群的生活史特征,制定科学的放牧机制;以植株为整体综合考虑植物功能性状变化,提出放牧研究中植物功能性状的发展方向。  相似文献   

3.
桃儿七不同器官中营养成分分布状况及其生态学意义   总被引:5,自引:0,他引:5  
植物生殖生态学是植物学领域中刚刚兴起并迅速发展的学科 ,近年来生活史进化理论的研究 ,使繁殖分配 (reproductiveallocation (RA ) )与繁殖投资(reproductiveeffort (RE) )研究成为植物生态学研究的主要焦点[7] 。目前在植物繁殖分配与繁殖投资研究中 ,通常用生物量作为衡量指标 ,这种方法遇到两个疑难问题 :一是各种成分在植物器官中的含量及比例各不相同 ,而且各种成分在植物生长发育过程中所起的生理功能也是不等价的 ,因此 ,在重量相同时 ,各器官的综合营养价值及生理功能是不等价的 ,生…  相似文献   

4.
不同生境中克隆植物的繁殖倾向   总被引:14,自引:0,他引:14  
对克隆植物在林下、草原、荒漠、冻原、农田和水域等6种不同类型生境中的繁殖对策及其生态适应意义进行了归纳和总结。对克隆植物有性繁殖与无性繁殖之间的权衡关系及相对重要性随水分、光照和温度的变化规律进行了阐述。分析表明,在环境条件严酷地区,克隆植物的无性繁殖在种群更新中的相对重要性有所增加。对两种繁殖方式的生态功能特性进行比较,综述了有关二者权衡关系的研究成果及影响二者权衡关系的部分因素。从研究手段上对克隆植物繁殖对策的研究进行了思考与展望。  相似文献   

5.
植物种子大小与幼苗生长策略研究进展   总被引:20,自引:0,他引:20  
种子大小和幼苗更新对策是植物生活史策略的重要组成部分.本文从不同侧面综述了当前国内外关于种子大小和幼苗之间关系的生态学研究,包括:种子大小对萌发出土的影响,种子大小与幼苗形态生长特性之间的关系,种子大小与幼苗存活、竞争能力之间关系等,并对今后的相关研究进行了展望.在不同的微环境和植被类型下,种子大小与幼苗生长之间的关系可能有所差异;种子大小对植物幼苗生长的影响导致种子大小不同的植物对植被幼苗更新补充的贡献不同;种子大小与幼苗生活史策略关系在大尺度的群落空间水平上和小尺度的物种间与物种内的研究对于天然植被的更新恢复研究具有重要意义.  相似文献   

6.
被子植物的营养构件如根、茎、叶以及繁殖构件如花、果实和种子等的结构及功能性状反映了物种对其生长环境的长期适应和响应。在植物种对环境的适应演化过程中,植物各构件在结构和功能上的变化不是孤立的、互不联系的,而是都具有内在的协调性、一致性,是协同进化的,各构件之间的关系决定了植物的生活史对策,进而影响群落(或生态系统)多物种的共存和生物多样性的维持。本文综述了群落水平上植物物种之间的各营养器官、各繁殖器官及二者之间结构性状及功能性状对环境适应协调性的生态学研究进展,不仅探究了植物构件间宏观性状的相关性,而且还涉及微观领域的研究成果及其相关机理,所涵盖的对象尺度有所扩大,是跨物种、跨群落或生态系统、甚至跨区域的。在形态学性状基础上,增加并拓展了其他学科的研究性状,例如解剖学性状、生理学性状、细胞学性状、遗传性状等。另外,也分析了相关研究存在的欠缺之处,并对今后的研究方向做出了展望。  相似文献   

7.
《植物生态学报》2021,44(11):1164
植物资源分配是目前植物生态学研究的热点问题, 主要集中在性分配和繁殖分配两个方面。该研究以分布在青藏高原的狮牙草状风毛菊(Saussurea leontodontoides)作为研究材料, 研究了6个海拔高度上果期植株的繁殖特征及资源分配的差异, 并用异速模型分析了繁殖性状及资源分配与个体大小的关系。结果显示: 1)狮牙草状风毛菊的个体大小、繁殖器官生物量、营养器官生物量、种子数和营养分配均与海拔存在极显著负相关关系, 百粒质量和繁殖分配与海拔存在极显著正相关关系。2)在不同海拔高度下, 百粒质量、种子数、繁殖器官生物量及营养分配与植株个体大小呈正相关关系; 繁殖分配与植株个体大小呈负相关关系; 而营养器官生物量与植株个体大小呈极显著正相关关系。这表明海拔和个体大小对狮牙草状风毛菊的繁殖对策有不同程度的影响, 狮牙草状风毛菊通过增加繁殖部分的生物量和百粒质量来适应高海拔的胁迫环境。  相似文献   

8.
以塔里木河下游分属于9科16属的21种荒漠植物为对象,调查了它们的植冠种子库情况以及繁殖体的附属物、形状(三维方差)、大小(三维之和)及质量(百粒重)等形态特征,并探讨了各种繁殖体的生态适应对策.结果表明:(1)13种荒漠植物可利用植冠种子库来躲避环境干扰:7种繁殖体具绢毛,2种繁殖体具翅,1种繁殖体具芒,3种繁殖体具冠毛,可利用风力实现传播与定居,而且它们可利用有水时期的速萌特性来适应当地生态输水这一辅助措施;5种繁殖体形状远离球形(三维方差≥0.126),6种繁殖体形状接近圆球形(三维方差<0.06).(2)5种具速萌特性的繁殖体(形状圆筒形、圆锥形和蝌蚪形)与8种具有持久土壤种子库的繁殖体(三维方差较小≤0.1且三维之和≤2.75 mm)利用它们互补的生态适应对策使其在研究区成功定居与繁衍; 13种以r-型生活史对策为主且粒小质轻的繁殖体(三维之和≤2.75 mm,单粒重<1 mg)与4种粒大质重的繁殖体(三维之和≥4.8 mm,单粒重>3.3 mg)利用其互补式繁殖对策将研究区生物多样性维持于一定水平.(3)7~9月份为一年生草本、多年生草本、(半)灌木植物及乔木同时落种的时期,可将人工输水集中于这一时期以实现研究区种子最大数量地萌发.  相似文献   

9.
植物资源分配是目前植物生态学研究的热点问题, 主要集中在性分配和繁殖分配两个方面。该研究以分布在青藏高原的狮牙草状风毛菊(Saussurea leontodontoides)作为研究材料, 研究了6个海拔高度上果期植株的繁殖特征及资源分配的差异, 并用异速模型分析了繁殖性状及资源分配与个体大小的关系。结果显示: 1)狮牙草状风毛菊的个体大小、繁殖器官生物量、营养器官生物量、种子数和营养分配均与海拔存在极显著负相关关系, 百粒质量和繁殖分配与海拔存在极显著正相关关系。2)在不同海拔高度下, 百粒质量、种子数、繁殖器官生物量及营养分配与植株个体大小呈正相关关系; 繁殖分配与植株个体大小呈负相关关系; 而营养器官生物量与植株个体大小呈极显著正相关关系。这表明海拔和个体大小对狮牙草状风毛菊的繁殖对策有不同程度的影响, 狮牙草状风毛菊通过增加繁殖部分的生物量和百粒质量来适应高海拔的胁迫环境。  相似文献   

10.
理解入侵生物的繁殖策略是阐明生物入侵机制的一个重要方面。入侵植物常表现出一些共同的繁殖特征,如以两性花为主的性系统、自动自交为主的繁育系统或不依赖传粉媒介的无融合生殖和无性繁殖以及高生殖投资的资源配置策略等。成功入侵的外来植物通过影响本土的传粉者,在种群和群落水平上影响本土植物的有性繁殖,甚至促使某些本土植物在繁殖对策和表型性状上发生快速转变。目前,入侵植物繁殖策略及其生态效应的研究多侧重于入侵种的快速演化,而有关外来植物与本土植物间的相互影响及其可能存在的协同适应研究还较为缺乏。探讨本土植物在外来种入侵压力下的繁殖对策和响应机制,将丰富人们对物种间竞争、共存及群落构建等机制的深入了解。从繁殖和适应的角度探求入侵植物与本土植物之间的复杂关系,将有助于解析生物入侵的机制及人类干扰下的物种演化规律,也为预测和防控入侵植物提供科学依据。  相似文献   

11.
植物种群的繁殖对策   总被引:81,自引:3,他引:78  
植物种群的繁殖对策钟章成(西南师范大学,重庆630715)ReproductiveStrategiesofPlantPopulations.¥ZhongZhangcheng(SouthwestChinaTeachersU-niversity,Chon...  相似文献   

12.
Species responses to disturbance are governed primarily by their life history and physiological traits and by the characteristics of the disturbance. Species reproductive traits are especially important in determining the potential of species to establish and to persist following disturbance. Herein, I review available literature on relationships among disturbance, species life histories, and seed fates in tundra environments. Research conducted on these relationships in alpine herbfield vegetation on the Beartooth Plateau, Montana, over the past 9 yr by my colleagues and myself is synthesized. In tundra environments, species reproductive capacities are often similar to those in more temperate environments, but short, cool growing seasons constrain seed production and reduce seedling growth and survival. Highly variable growing season conditions result in large differences in seed production and seedling establishment among years. On disturbed sites, disturbance characteristics determine the seed and seedling environment and influence rates of establishment. In these windy environments, relationships among soil surface characteristics and seed morphological attributes determine both the horizontal and vertical movement of seeds on exposed soils. Once seeds are incorporated into the soil, soil physical and chemical properties determine temperature and nutrient regimes and have the greatest effects on seed germination and seedling growth and survival. Examining the seed fates of herbfield species with varying life histories illustrates that the identities of species that establish following disturbance are largely predictable from their reproductive traits. Disturbance characteristics determine the success of different reproductive strategies and significantly influence community structure.  相似文献   

13.
Reciprocal introduction of seeds and seedlings of wild barley, Hordeum spontaneum , originating in four different environments of Israel was used to: (1) test for local adaptation, (2) make inferences about environmental effects on life‐history and reproductive traits, and (3) identify trait combinations with recognizable ‘strategies’. The four populations examined represented the following environments: (1) desert ? low productivity and predictability, drought stress; (2) semi‐steppe batha ? moderate productivity and predictability; (3) grassland ? high productivity and predictability; and (4) mountain ? high productivity and predictability but with severe frost stress. Significant genotype‐by‐environment interactions were observed for yield and reproductive biomass, seedling biomass and percentage germinated and survived seeds, suggesting local ecotype adaptation. Increasing productivity and predictability of environment in respect to rainfall, without concomitant frost stress, was found to select for high reproductive biomass and large seeds, a high fraction of germinating seeds and high vigour of seedlings. The optimal strategy changes with increasing productivity and predictability and involves a trade‐off between seed size and number, with reduced yield but increased seed mass, consistent with competition selection (or K‐selection sensu MacArthur & Wilson (1967 )) type. No specific life‐history adaptations to predictable frost stress were detected for the mountain ecotype, but there was higher survival of seedlings in their indigenous (mountain) environment compared with other ecotypes. The latter appears to be a physiological adaptation to frost, which is consistent with selection for stress tolerance (or S‐selection sensu Grime (1977 )) type. The other stress factor, drought, which is very unpredictable in deserts, was associated with high seed dormancy, small seed size and low vigour of seedlings, but relatively high yield, which is consistent with a stress‐escape bet‐hedging strategy. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 479–490.  相似文献   

14.
Aim To investigate whether six plant life‐history traits that have been related to colonization ability at local scales are also related to the geographical range characteristics of 273 forest plant species. Location Continental western Europe, five countries in particular: France, Luxemburg, Belgium, the Netherlands and Germany. The region is situated between 42° and 55°N and 5°W and 15°E and has a summed total area of 971,404 km2. Methods Distribution data were compiled from five national data bases and converted to a 10′ grid. Life‐history traits were taken from existing compilations of autecological information of European species. The spatial arrangement of occupied grid cells was investigated using Ripley's K. Cross‐species correlations and phylogenetically independent contrasts were used to investigate the relationships between plant life‐history traits and three range characteristics: area of occupancy, latitudinal extent and centroid latitude. Results For herbaceous species, seed dispersal mode, seed production and seed bank longevity exhibited significant associations with geographical range characteristics, including area of occupancy. Woody plant species exhibited fewer significant associations, although maximum height was positively associated with range centroid latitude within the study area. Furthermore, the ranges of species with limited dispersal ability were found to be more clustered than the ranges of species with morphological adaptations for long‐distance seed dispersal. Main conclusions For western European forest plant species, life‐history traits that are related to colonization ability at local scales are associated with variation in large‐scale geographical range characteristics. This finding implies that the distributions of some forest plant species in the study area may be limited by seed dispersal and colonization capacity rather than climate or other environmental factors.  相似文献   

15.
The phenology of seed ripening and release are important for dispersal, reproductive success and survival of plants. Most phenological studies, however, consider early phenological phases. Here, we examined the ecological and evolutionary basis of ripening and seed release phenology. We monitored single flower phenology for 104 plant species from 30 families and three life forms from central Europe. Further, we undertook an associate monitoring study along an elevational gradient over two years. We calculated temperature demands (as growing degree days) for ripening and seed release and examined them with respect to the species’ seed mass, life form, dispersal mode and phylogeny. We found a strong correlation between species’ seed mass and temperature demands for ripening. For both variables seed mass and temperature demands for seed ripening, we found a strong effect of the species phylogeny. These phylogenetic signals indicate that the evolutionary history of the species’ lineage affects its seed mass and the temperature demands for seed ripening. Among the studied life forms, shrub species showed the most efficient ripening process. Anemochorous species showed lower relative humidity during seed release than epizoochorous species. For anemochorous species, the synchronisation of release timing with periods that show favourable environmental conditions for wind dispersal could be interpreted as a phenological adaptation to increase dispersal distances. According to the monitoring along the elevational gradient, individuals from higher altitudes showed lower temperature demands for ripening than individuals from lower altitudes. This might tentatively indicate physiological adaptations to lower temperature demands for locations with a shorter growing season. Our study provides basic insights into the ecological, environmental and evolutionary constraints that shape the ripening and seed release phenology of plants. We introduce data that can be used to advance existing models of ripening phenology, seed release and plant spread.  相似文献   

16.
The ecological differences between ‘shrubs’ and ‘trees’ are surprisingly poorly understood and clear ecological definitions of these two constructs do not exist. It is not clear whether a shrub is simply a small tree or whether shrubs represent a distinct life‐history strategy. This question is of special interest in African savannas, where shrubs and trees often co‐dominate, but are often treated uniformly as ‘woody plants’ even though the tree to shrub ratio is an important determinant of ecosystem functioning. In this study we use data from a long‐term fire experiment, together with a trait‐based approach to test (i) if woody species usually classified as shrubs or trees in African savanna differ in key traits related to disturbance and resource use; and (ii) if these differences justify the interpretation of the two growth forms as distinct life‐history strategies. We measured for 22 of the most common woody plant species of a South African savanna 27 plant traits related to plant architecture, life‐history, leaf characteristics, photosynthesis and resprouting capacity. Furthermore we evaluated their performance during a long‐term fire experiment. We found that woody plants authors call (i) shrubs; (ii) shrubs sometimes small trees; and (3) trees responded differently to long‐term fire treatments. We additionally found significant differences in architecture, diameter‐height‐allometry, foliage density, resprouting vigour after fire, minimum fruiting height and foliar δ13C between these three woody plant types. We interpret these findings as evidence for at least two different life‐history‐strategies: an avoidance/adaptation strategy for shrubs (early reproduction + adaptation to minor disturbance) and an escape strategy for trees (promoted investment in height growth + delayed reproduction).  相似文献   

17.
Seed size and plant strategy across the whole life cycle   总被引:9,自引:0,他引:9  
Angela T.Moles  MarkWestoby 《Oikos》2006,113(1):91-105
We compiled information from the international literature to quantify the relationships between seed mass and survival through each of the hazards plants face between seed production and maturity. We found that small-seeded species were more abundant in the seed rain than large-seeded species. However, this numerical advantage was lost by seedling emergence. The disadvantage of small-seeded species probably results from size-selective post-dispersal seed predation, or the longer time small-seeded species spend in the soil before germination. Seedlings from large-seeded species have higher survival through a given amount of time as seedlings. However, this advantage seems to be countered by the greater time taken for large-seeded species to reach reproductive maturity: our data suggested no relationship, or perhaps a weak negative relationship, between seed size and survival from seedling emergence through to adulthood. A previous compilation showed that the inverse relationship between seed mass and the number of seeds produced per unit canopy area per year is countered by positive relationships between seed mass, plant size and plant longevity. Taken together, these data show that our old understanding of a species' seed mass as the result of a trade–off between producing a few large offspring, each with high survival probability, versus producing many small offspring each with a lower chance of successfully establishing was incomplete. It seems more likely that seed size evolves as part of a spectrum of life history traits, including plant size, plant longevity, juvenile survival rate and time to reproduction.  相似文献   

18.
湿地土壤种子库与地上植被相似性关系研究评述   总被引:3,自引:0,他引:3  
刘庆艳  姜明  吕宪国  王国栋 《生态学报》2014,34(24):7465-7474
土壤种子库与地上植被的关系是土壤种子库研究的重要组成部分。当前,湿地生态系统面临严重威胁,研究湿地土壤种子库和地上植被关系既可以加强对土壤种子库和植物群落特征的认识,又可以为湿地保护与管理提供理论指导。检索了科学引文索引扩展版(SCIE)数据库中收录的1900—2012年间研究湿地土壤种子库与地上植被关系的文献,通过分析土壤种子库与地上植被的Srensen相似性系数,结果发现:不同湿地类型的土壤种子库和地上植被的相似性存在显著差异,河流湿地中两者的相似性最小;不同植被类型中土壤种子库与地上植被的相似性差异显著:草本群落的相似性大于乔木群落;不同气候带的湿地中两者的相似性也存在显著差异,其中亚热带地区相似性最小。总结了湿地种子库与地上植被相似性关系的时空变化特征。二者的相似性通常随着植物群落的演替而减小,在空间上也随着环境梯度而变化。分析了两者关系的影响因素,如种子传播、环境条件和繁殖策略等。对研究中存在的问题及发展方向提出建议。  相似文献   

19.
Studies of genetic adaptation in plant populations along elevation gradients in mountains have a long history, but there has until now been neither a synthesis of how frequently plant populations exhibit adaptation to elevation nor an evaluation of how consistent underlying trait differences across species are. We reviewed studies of adaptation along elevation gradients (i) from a meta‐analysis of phenotypic differentiation of three traits (height, biomass and phenology) from plants growing in 70 common garden experiments; (ii) by testing elevation adaptation using three fitness proxies (survival, reproductive output and biomass) from 14 reciprocal transplant experiments; (iii) by qualitatively assessing information at the molecular level, from 10 genomewide surveys and candidate gene approaches. We found that plants originating from high elevations were generally shorter and produced less biomass, but phenology did not vary consistently. We found significant evidence for elevation adaptation in terms of survival and biomass, but not for reproductive output. Variation in phenotypic and fitness responses to elevation across species was not related to life history traits or to environmental conditions. Molecular studies, which have focussed mainly on loci related to plant physiology and phenology, also provide evidence for adaptation along elevation gradients. Together, these studies indicate that genetically based trait differentiation and adaptation to elevation are widespread in plants. We conclude that a better understanding of the mechanisms underlying adaptation, not only to elevation but also to environmental change, will require more studies combining the ecological and molecular approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号