首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oncostatin-M (OSM) is an IL-6/gp130 family member that can stimulate the eosinophil-selective CC chemokine eotaxin-1 in vitro and eosinophil accumulation in mouse lung in vivo. The adhesion molecule VCAM-1 and eotaxin have been implicated in extravasation and accumulation of eosinophils into tissue in animal models of asthma. In this study, we investigated the role of OSM in regulation of VCAM-1 expression, and STAT6 tyrosine 641 phosphorylation in murine fibroblasts. OSM induced VCAM-1 expression in C57BL/6 mouse lung fibroblasts (MLF) and NIH 3T3 fibroblasts at the protein and mRNA level in vitro. OSM also induced STAT6 Y641 phosphorylation in MLF and NIH 3T3 fibroblasts, an activity not observed with other IL-6/gp130 cytokine family members (IL-6, leukemia inhibitory factor, cardiotropin-1, and IL-11) nor in cells derived from STAT6(-/-) mice (STAT6(-/-) MLF). STAT6 was not essential for OSM-induced VCAM-1 or eotaxin-1 as assessed in STAT6(-/-) MLF. Combination of IL-4 and OSM synergistically enhanced eotaxin-1 expression in MLF. IL-4 induction and the IL-4/OSM synergistic induction of eotaxin-1 was abrogated in STAT6(-/-) MLF, however, regulation of IL-6 was similar in -/- or wild-type MLF. Induction of VCAM-1 by OSM was diminished by pharmacological inhibitors of PI3K (LY294002) but not inhibitors of ERK1/2 (PD98059) or p38 MAPK (SB203580). These data support the role of OSM in eosinophil accumulation into lung tissue through eotaxin-1 and VCAM-1 expression and the notion that OSM is able to induce unique signal transduction events through its receptor complex of OSMR beta-chain and gp130.  相似文献   

3.
4.
5.
Using loss-of-function mutants of Ros and inducible epidermal growth factor receptor-Ros chimeras we investigated the role of various signaling pathways in Ros-induced cell transformation. Inhibition of the mitogen-activated protein kinase (MAPK) pathway with the MEK (MAP/extracellular signal-regulated kinase kinase) inhibitor PD98059 had little effect on the Ros-induced monolayer and anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells even though more than 70% of the MAPK was inhibited. In contrast, inhibiting the phosphatidylinositol 3-kinase (PI3K) pathway with the drug LY294002, a dominant negative mutant of PI3K, Deltap85, or the phosphatidylinositol phosphatase PTEN (phosphatase and tensin homologue deleted in chromosome ten) resulted in a dramatic reduction of v-Ros- and epidermal growth factor receptor-Ros-promoted anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells, respectively. Parallel and downstream components of PI3K signaling such as the Rho family GTPases (Rac, Rho, Cdc42) and the survival factor Akt were all shown to contribute to Ros-induced anchorage-independent growth, although Rac appeared to be less important for Ros-induced colony formation in NIH3T3 cells. Furthermore, the transformation-attenuated v-Ros mutants F419 and DI could be complemented by constitutively active mutants of PI3K and Akt. Finally, we found that overexpressing a constitutively active mutant of STAT3 (STAT3C) conferred a resistance to the inhibition of Ros-induced anchorage-independent growth by LY294002, suggesting a possible overlap of functions between PI3K and STAT3 signaling in mediating Ros-induced anchorage-independent growth.  相似文献   

6.
We observed that recombinant ciliary neurotrophic factor (CNTF) enhanced survival and neurite outgrowth of cultured adult rat dorsal root ganglion (DRG) neurons. Among other neurotrophic factors (NGF and GDNF) and interleukin (IL)-6 cytokine members [IL-6, LIF, cardiotrophin-1, and oncostatin M (OSM)] at the same concentration (50 ng/ml), CNTF, as well as LIF and OSM, displayed high efficacy for the promotion of the number of viable neurons and neurite-bearing cells. CNTF enhanced the number of neurite-bearing cells in both small neurons (soma diameter <30 mum) and large neurons (soma diameter >/=30 mum), whereas NGF and GDNF promoted that in only small neurons. Western blot analysis revealed that CNTF induced phosphorylation of STAT3, Akt, and ERK1/2 in the neurons. Furthermore, the neurite outgrowth-promoting activity of CNTF was diminished by co-treatment with Janus kinase (JAK) 2 inhibitor, AG490; STAT3 inhibitor, STA-21; phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002; and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, in a concentration-dependent manner. Its survival-promoting activity was also affected by AG490, STA-21, and LY294002 at higher concentrations, but not by PD98059. These findings suggest the involvement of JAK2/STAT3, PI3K/Akt, and MEK/ERK signaling pathways in CNTF-induced neurite outgrowth, where the former two pathways are thought to play major roles in mediating the survival response of neurons to CNTF.  相似文献   

7.
8.
Mesonephric cell migration and seminiferous cord formation are critical processes in embryonic testis development at the time of male sex determination. Extracellular growth factors shown to influence seminiferous cord formation such as neurotropin-3 utilize in part the phosphotidylinositol 3-kinase (PI3K) signal transduction pathway. The current study investigates the hypothesis that the PI3K pathway is critical in seminiferous cord formation and testis development. The role of the PI3K signaling pathway in testicular cord formation was examined using an Embryonic Day 13 organ culture system and a PI3K-specific inhibitor LY294002. The actions of a mitogen-activated protein (MAP) kinase-specific inhibitor PD98059 was also examined. The PI3K inhibitor blocked cord formation or reduced the number of cords in a concentration-dependent manner. The actions of LY294002 were found to have a developmental stage specificity in that cord inhibition was observed in organs from embryos with 16-17 tail somites, while organs from embryos with 19 or more tail somites had no block in cord formation and only a small reduction in cord number. In contrast, the MAP kinase inhibitor PD98059 did not block cord formation and only caused a slight reduction in cord number. Neither PI3K or MAP kinase inhibitor altered apoptotic cell number, suggesting apoptosis was not the reason for the inhibition of cord formation. Embryonic testis cell migration assays showed that the PI3K inhibitor LY294002 blocked mesonephros cell migration into the testis, while the MAP kinase inhibitor had no effect. Observations suggest the interference of cell migration is the cause for the inhibition of cord formation. Western blot analysis confirmed that LY294002 and PD98509 inhibited phosphorylation of Akt and ERK1/ERK2, respectively. Combined observations demonstrate that the PI3K signaling pathway is involved in embryonic testis cord formation and mesonephros cell migration.  相似文献   

9.
10.
目的:用低血清培养液来模拟肾脏供血不足的营养不良状态,研究低浓度哇巴因对低血清培养下OK细胞(负鼠肾小管上皮细胞)增殖的影响。方法:用低浓度哇巴因(1-30n M)处理0.2%血清培养下OK细胞,MTT实验和Brdu掺入法检测哇巴因对OK细胞增殖的影响;Western blot检测Akt和ERK1/2的磷酸化水平;用LY294002和PD98059分别抑制PI3K/Akt和ERK1/2蛋白激酶活性,观察抑制PI3K/Akt和ERK1/2对哇巴因促进OK细胞增殖的影响。结果:低浓度哇巴因(1-30n M)促进OK细胞的增值,上调OK细胞中Akt和ERK1/2磷酸化水平。用LY294002和PD98059特异抑制Akt和ERK1/2的活化能够抑制哇巴因的促增殖作用。结论:低浓度哇巴因(1-10n M)能够促进OK细胞的增值,PI3K/Akt和ERK1/2信号通路参与哇巴因对OK细胞促增殖作用的调节。  相似文献   

11.
Abstract

In rat HTC hepatoma cells overexpressing human insulin receptors, insulin stimulated glycogen synthesis by 55–70%. To study postreceptor signaling events leading to insulin-stimulated glycogen synthesis in these cells, we have employed pathway-specific chemical inhibitors such as LY294002, rapamycin and PD98059 to inhibit phosphatidylinositol-3-kinase (PI3K), p70 ribosomal S6 kinase and mitogen-activated protein kinase (MAPK) kinase/MAPK, respectively. LY294002 (50 μM) completely abolished insulin-stimulated glycogen synthesis whereas rapamycin (2–20 nM) partially inhibited it. Neither LY294002 nor rapamycin significantly affected the basal glycogen synthesis. However, PD98059 (100 μM) significantly inhibited the basal glycogen synthesis without affecting insulin-stimulated glycogen synthesis. In these cells, insulin at 100 nM decreased glycogen synthase kinase 3α (GSK3α) activity by 30–35%. LY294002, but neither rapamycin nor PD98059, abolished insulin-induced inactivation of GSK3α. These data suggest that insulin-stimulated glycogen synthesis in rat HTC hepatoma cells is mediated mainly by PI3K-dependent mechanism. In these cells, inactivation of GSK3α, downstream of PI3K, may play a role in insulin-stimulated glycogen synthesis.  相似文献   

12.
13.
BACKGROUND: Currently there is no information on the regulation of expression and physiological role of the anti-apoptotic protein Mcl-1 in cells of the melanocytic lineage. This study investigates the regulation and expression of Mcl-1 in human melanoma cells, which was recently found to be induced by betulinic acid, a compound with anti-melanoma and apoptosis-inducing potential. MATERIALS AND METHODS: Mcl-1 phosphorthioate antisense oligonucleotides were used to investigate the effect of downregulating the expression of Mcl-1. Regulation of Mcl-1 expression was analyzed with the specific PI3-kinase inhibitors LY294002 and wortmannin and the inhibitor of MAP-kinase activation, PD98059. Western blot analysis was performed with anti ERK1/2, Mcl-1, Bak, Bcl-x and Bax antibodies. Activation status of PI-3 kinase and MAP-kinase pathways was investigated using phospho-Akt and phosphorylation-state independent Akt as well as phospho-MAP kinase, phospho-MEK and phospho-GSK-3alpha/beta antibodies. RESULTS: Upregulation of Mcl-1 in human melanoma cells by betulinic acid is mediated via a signal-transduction pathway that is inhibited by LY294002 and wortmannin. Betulinic acid-induced phosphorylation and activation of the Akt protein kinase was inhibited by LY294002. The inhibitor PD98059 reduced expression levels of Mcl-1 in melanoma cells and this effect was counteracted by betulinic acid. Downregulation of Mcl-1 by antisense oligodeoxynucleotides in combination with betulinic treatment led to a synergistic effect regarding growth inhibition. CONCLUSIONS: These results suggest that in human melanoma cells Mcl-1 is (i) of functional relevance for survival and (ii) subject to dual regulation by the MAP- kinase pathway and a pathway involving protein kinase B/Akt, the latter of which is modulated in response to betulinic acid. This study provides an experimental foundation for future therapeutic strategies using anti-Mcl-1 antisense oligonucleotides in human melanoma.  相似文献   

14.
15.
Oncostatin M (OSM), a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family, has been implicated in regulation of various chronic inflammatory processes. Previous work has shown that OSM induces eosinophil accumulation in mouse lungs in vivo and stimulates the eosinophil-selective chemokine eotaxin-1 synergistically with IL-4 in vitro. To examine the role of receptor regulation by OSM in synergistic eotaxin-1 responses, we here examine the modulation of the type-II IL-4 receptor (IL-4Rα and IL-13Rα1) by OSM and other gp130/IL-6 cytokine family members using NIH3T3 fibroblasts and primary mouse lung fibroblasts. We first show that OSM with either IL-13 or IL-4 synergistically induces eotaxin-1 expression in a dose-dependent fashion. Analysis of IL-4Rα expression at the protein (Western blot and FACS) and RNA (TAQMAN) levels showed that OSM markedly elevates expression by 3 h. OSM enhanced IL-13Rα1 mRNA and induced a smaller but detectable increase in total IL-13Rα1 protein. Priming fibroblasts with OSM for 6 h markedly enhanced subsequent IL-13 and IL-4-induced eotaxin-1 responses and STAT6 tyrosine-641 phosphorylation. Regulation of IL-4Rα by OSM was sensitive to inhibition of the PI3′K pathway by LY294002. These studies provide novel mechanistic insights in OSM role in regulation of synergistic eotaxin-1 responses and IL-4Rα expression in fibroblasts.  相似文献   

16.
17.
Activated neutrophils play an important role in the pathogenesis of sepsis, glomerulonephritis, acute renal failure, and other inflammatory processes. The resolution of neutrophil-induced inflammation relies, in large part, on removal of apoptotic neutrophils. Neutrophils are constitutively committed to apoptosis, but inflammatory mediators, such as GM-CSF, slow neutrophil apoptosis by incompletely understood mechanisms. We addressed the hypothesis that GM-CSF delays neutrophil apoptosis by activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI 3-kinase) pathways. GM-CSF (20 ng/ml) significantly inhibited neutrophil apoptosis (GM-CSF, 32 vs 65% of cells p < 0. 0001). GM-CSF activated the PI 3-kinase/Akt pathway as determined by phosphorylation of Akt and BAD. GM-CSF-dependent Akt and BAD phosphorylation was blocked by the PI 3-kinase inhibitor LY294002. A role for the PI 3-kinase/Akt pathway in GM-CSF-stimulated delay of apoptosis was indicated by the ability of LY294002 to attenuate apoptosis delay. GM-CSF-dependent inhibition of apoptosis was significantly attenuated by PD98059, an ERK pathway inhibitor. LY294002 and PD98059 did not produce additive inhibition of apoptosis delay. To determine whether PI 3-kinase and ERK are used by other ligands that delay neutrophil apoptosis, we examined the role of these pathways in IL-8-induced apoptosis delay. LY294002 blocked IL-8-dependent Akt phosphorylation. PD98059 and LY294002 significantly attenuated IL-8 delay of apoptosis. These results indicate IL-8 and GM-CSF act, in part, to delay neutrophil apoptosis by stimulating PI 3-kinase and ERK-dependent pathways.  相似文献   

18.
Little is known about whether there is a relationshipbetweenPI3K/AKT, ERK1/2 and an inverted CCAAT box binding protein (ICBP90) in biological behaviours of tumour cells. The aim of this study was to determine thisusing Jurkat T cells. Compared to PD98059 (an ERK1/2 signaling inhibitor), DAPT (a Notch signaling inhibitor) or adriamycin (a classical anti-tumour drug), the inhibition of Jurkat T cell growth by LY294002 (a PI3K/Akt signaling inhibitor) was more obvious. LY294002 combined with adriamycin appeared to have a synergistic effect. LY294002 strongly blocked Jurkat T cells at each phase of cell cycle with a decrease of DNA content, superior to adriamycin. Consistent with these changes, the expression of phosphorylated ERK1/2 was markedly decreased in the LY294002-treated Jurkat T cells, leading to the reduction of ICBP90 production, followed by moderate attenuation of TGF-β secretion. The results suggest that deactivation of PI3K/Akt signalling can surpress Jurkat T cell growth through inhibiting cell proliferation and blocking the cell cycle. ICBP90 may mediate the PI3K/AKT-ERK1/2 signalling to regulate leukemia cell growth.  相似文献   

19.
Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 influences growth-associated protein 43 (GAP-43) expression and activates the extracellular signal-regulated protein kinase (ERK1/2) and the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways in DRG neurons with excitotoxicity induced by glutamate (Glu) remains unknown. In this study, embryonic 15-day-old rat DRG explants were cultured for 48 h and then exposed to IGF-1, Glu, Glu + IGF-1, Glu + IGF-1 + PD98059, Glu + IGF-1 + LY294002, Glu + IGF-1 + PD98059 + LY294002 for additional 12 h. The DRG explants were continuously exposed to growth media as control. The levels of GAP-43 mRNA were detected by real time-PCR analysis. The protein levels of GAP-43, phosphorylated ERK1/2, phosphorylated Akt, total ERK1/2, and total Akt were detected by Western blot assay. GAP-43 expression in situ was determined by immunofluorescent labeling. Apoptotic cell death was monitored by Hoechst 33342 staining. IGF-1 alone increased GAP-43 and its mRNA levels in the absence of Glu. The decreased GAP-43 and its mRNA levels caused by Glu could be partially reversed by the presence of IGF-1. IGF-1 rescued neuronal cell death caused by Glu. Neither the ERK1/2 inhibitor PD98059 nor the PI3K inhibitor LY294002 blocked the effect of IGF-1, but both inhibitors together were effective. To validate the impact of GAP-43 expression by IGF-1, GAP-43 induction was blocked by administration of dexamethasone (DEX). IGF-1 partially rescued the decrease of GAP-43 and its mRNA levels induced by DEX. DEX induced an increase of cell apoptosis. IGF-1 may play an important role in neuroprotective effects on DRG neurons through regulating GAP-43 expression with excitotoxicity induced by Glu and the process was involved in both ERK1/2 and PI3K/Akt signaling pathways.  相似文献   

20.
Wang L  Chen Q  Li G  Ke D 《Peptides》2012,33(1):92-100
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), is thought to exert a protective effect on the cardiovascular system, specifically by promoting vascular endothelial cell function such as cell proliferation, migration, survival and angiogenesis. However, the effect of ghrelin on angiogenesis and the corresponding mechanisms have not yet been extensively studied in cardiac microvascular endothelial cells (CMECs) isolated from left ventricular myocardium of adult Sprague-Dawley (SD) rats. In our study, we found that ghrelin and GHSR are constitutively expressed in CMECs. Ghrelin significantly increases CMECs proliferation, migration, and in vitro angiogenesis. The ghrelin-induced angiogenic process was accompanied by phosphorylation of ERK and Akt. MEK inhibitor PD98059 abolished ghrelin-induced phosphorylation of ERK, but had no effect on Akt phosphorylation. PI3K inhibitor LY294002 abolished ghrelin-induced phosphorylation of Akt, but had no effect on ERK phosphorylation. Ghrelin-induced angiogenesis was partially blocked by treatment with PD98059 or LY294002. In addition, this angiogenic effect was almost completely inhibited by PD98059+LY294002. Pretreatment with GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced phosphorylation of ERK, Akt and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates CMECs angiogenesis through GHSR1a-mediated MEK/ERK and PI3K/Akt signal pathways, indicating that two pathways are required for full angiogenic activity of ghrelin. This study suggests that ghrelin may play an important role in myocardial angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号