首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reay Smithers 《Ostrich》2013,84(4):168-170
Austin, G. T. 1979. Pattern and timing of moult in penduline tits (Anthoscopus). Ostrich 49:168-173.

Moult was examined in species of Anthoscopus. Second and subsequent prebasic moults were complete. Primary and rectrix moult was typical of passerines, but secondary moult was some what irregular. Moult was largely non-overlapping with breeding, although some body moult was noted during the breeding season. In southern Africa there was some regional variation in timing of moult. First year birds moulted after adults had largely completed feather replacement. This first prebasic moult was incomplete.  相似文献   

2.
Time constraint is a main factor which affects the moult strategies in passerines, mainly during the first year of life. The variability of moult strategies between species is associated with the extent of the moult. In the first year of life, the extent of the moult is highly variable between species and individuals. In most passerine species, juveniles only renew some of their feathers, but the factors that govern which feathers are renewed and which are retained have been largely overlooked. Here we examine the common pattern of non‐moulted primary coverts (PC) in passerines during the first‐year moult cycle (post‐juvenile and first‐year pre‐breeding moults). On the interspecific level we found that among 63 species of passerines, PCs are the least commonly moulted feather tract. For five species (Hirundo rustica, Pycnonotus xanthopygos, Prinia gracilis, Acrocephalus stentoreus and Passer moabiticus) which perform a complete post‐juvenile moult, we found that the PC moult occurs over a longer period than greater coverts (GCs) and is sequential (non‐simultaneous). At the intraspecific level, we found that the main difference between a partial and complete moult in Prinia gracilis is the moulting or non‐moulting of the PCs. We also demonstrate that for Prinia gracilis 1) juveniles which do not moult their PCs, moult their primaries at a higher speed than those which moult their PCs and 2) area/mass ratio of PCs is lower than of GCs. These two findings may explain why many passerines skip PC renewal during the first year of life. Because the PC moult lasts a long time, forgoing this moult enables long term resource savings that allow for dealing with time constraints. Our results highlight the adaptive advantages of non‐moulted PCs in cases of time constraints.  相似文献   

3.
《Journal of avian biology》2017,48(3):362-370
In animals, events occurring early in life can have profound effects on subsequent life‐history events. Early developmental stresses often produce negative long‐lasting impacts, although positive effects of mild stressors have also been documented. Most studies of birds have investigated the effects of events occurring at early developmental stages on the timing of migration or reproduction, but little is known on the long‐term effects of these early events on moulting and plumage quality. We exposed European starling Sturnus vulgaris nestlings to an immune challenge to assess the effects of a developmental stress on the timing of the first (post‐juvenile) and second (post‐breeding) complete annual moult, the length of the flight feathers, and the length and colouration of ornamental throat feathers. The nestlings were transferred to indoor aviaries before fledgling and kept in captivity until the end of post‐breeding moult. Individuals treated with Escherichia coli lypopolysaccharide (LPS) started both moult cycles earlier compared to control siblings. Moult duration was unaffected by the immune challenge, but an advanced moult onset resulted in a longer moult duration. Moreover, female (but not male) throat feather colouration of LPS‐injected individuals showed a reduced UV chroma. We argue that an early activation of the immune system caused by LPS may allow nestlings to better cope with post‐fledging stresses and lead to an earlier moult onset. The effect of early LPS exposure was remarkably persistent, as it was still visible more than one year after the treatment, and highlighted the importance of early developmental stresses in shaping subsequent major life‐history traits, including the timing of moult in birds.  相似文献   

4.
Events in the life cycle of migrant birds are generally time‐constrained. Moult, together with breeding and migration, is the most energetically demanding annual cycle stages, but it is the only stage that can be scheduled at different times of the year. However, it is still not fully understood what factors determine this scheduling. We compare the timing of primary feather moult in relation to breeding and migration between two populations of Eurasian golden plover Pluvialis apricaria, the continental population breeding in Scandinavia and in N Russia that migrates to the Netherlands and southern Europe, and the Icelandic population that migrates mainly to Ireland and western UK. Moult was studied at the breeding grounds (N Sweden, N Russia, Iceland) and at stopover and wintering sites (S Sweden, the Netherlands). In both populations, primary moult overlapped with incubation and chick rearing, and females started on average 9 d later than males. Icelandic plovers overlapped moult with incubation to a larger extent and stayed in the breeding grounds until primary moult was completed. In contrast, continental birds only moulted the first 5–7 primaries at the breeding grounds and completed moult in stopover and wintering areas, such as S Sweden and the Netherlands. This overlap, although rare in birds, can be understood from an annual cycle perspective. Icelandic plovers presumably need to initiate moult early in the season to be able to complete it at the breeding grounds. The latter is not possible for continental plovers as their breeding season is much shorter due to a harsher climate. Additionally, for this population, moulting all the primaries at the stopover/wintering site is also not possible as too little time would remain to prepare for cold‐spell movements. We conclude that environmental conditions and migration strategy affect the annual scheduling of primary feather moult in the Eurasian golden plover.  相似文献   

5.
A trade‐off between immune system and moulting is predicted in birds, given that both functions compete for resources. However, it is unclear whether such a trade‐off exists during post‐breeding moult. This study tests such a trade‐off in the house sparrow (Passer domesticus). Males injected with an antigen (lipopolysaccharide) significantly moulted slower than sham‐injected males. Moreover, males whose seventh primaries were plucked to simulate moult showed smaller immune response to phytohaemagglutinin than control males, in which seventh primaries were clipped. A trade‐off between moult speed and body mass was also found. The results show a clear trade‐off between moult and immune response in the house sparrow: immune response negatively affected moult and moult negatively affected immune response. These findings suggest that only individuals in good condition may have an efficient moult and simultaneously respond effectively in terms of immunity to pathogens, which could explain how plumage traits honestly indicate parasite resistance in birds.  相似文献   

6.
Growing evidence suggests that structural feather colours honestly reflect individual quality or body condition but, contrary to pigment‐based colours, it is not clear what mechanism links condition to reflectance in structural feather colours. We experimentally accelerated the moult speed of a group of blue tits (Cyanistes caeruleus) by exposing them to a rapidly decreasing photoperiod and compared the spectral characteristics of their structural feather colours with those of control birds. Blue tits were sexually dimorphic on the UV/blue crown and on the white cheek feathers. Moult speed, however, dramatically reduced brightness and the saturation only on the UV/blue crown feathers, whereas structural white on the cheek feathers was basically unaffected by moult speed. Given that the time available for moulting is usually confined to the period between the end of the breeding season and migration or wintering, UV/blue colours, but not structural white, may convey long‐term information about an individual’s performance during the previous breeding season. The trade‐off between fast moulting and structural colour expression may represent a previously unrecognized selective advantage for early‐breeding birds.  相似文献   

7.
RICHARD ZANN 《Ibis》1985,127(2):184-196
Moult of the remiges was studied over eight years in a population of Zebra Finches from southeast Australia. In first-year birds the first primary was lost at mean age of 80 days in both sexes; moult took 204 days to complete in males and 223 in females. Birds hatched in autumn postponed the start of their primary moult until spring. Primaries were replaced slowly in a rigid, non-overlapping, ascending order from #1 to #9 but the secondaries did not display a rigid sequence.
Adult Zebra Finches moulted remiges throughout the year. Primary moult was initiated in any month. Primary moult had a mean duration of 229 days for males and 240 days for females. Primaries moulted in continuous waves: the interval between successive moults in males was –16 days and +6 days in females. Limited food, low temperatures and breeding slowed, but did not stop, wing-moult. Birds caring for eggs and young actively replaced remiges.
The pattern of wing-moult displayed here by Zebra Finches is exceptional for passerines and may be related to the opportunistic breeding strategy necessary in an arid, unpredictable environment. Its presence in the Victorian birds may be non-adaptive.  相似文献   

8.
Large‐scale spatial gradients of environmental conditions shape organisms, populations and ecosystems. Even though environmental gradients are a key research theme in macro‐ecology and biogeography, the effects of large‐scale, east–west, environmental gradients are largely overlooked compared with north–south gradients. Our study focused on feather moult, an important and energy demanding process in birds. By comparing Western and Eastern Palearctic populations of 21 species, we found that juvenile passerines in the Western and Eastern Palearctic differ in the number of feathers moulted as part of their post‐juvenile moult. This difference is most likely the result of a large‐scale climatic gradient in cold season duration and consequent differences in the time available for moulting. Eastern populations were characterized by a limited extent of feather moult that was additionally affected by migration distance and body mass. The longer migration distance in the Eastern Palearctic caused a generally less extensive moult while high body mass was correlated with a low difference in moult extent between the Western and Eastern Palearctic regions. These results highlight the importance of linking annual cycle processes at the organismal level to the specific environmental conditions within the distribution range of each species.  相似文献   

9.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

10.
In some tropical birds, breeding seasonality is weak at the population level, even where there are predictable seasonal peaks in environmental conditions. It therefore remains unclear whether individuals are adapted to breeding at specific times of the year or flexible to variable environmental conditions. We tested whether the relative year‐round breeding activity of the Common Bulbul Pycnonotus barbatus arises due to within‐individual variability in breeding dates. We collected data from 827 birds via mist‐netting over 2 years with corresponding local weather data. We used a combination of climate envelope and generalized linear mixed models to explore how the timing of breeding is influenced by time of year, individual variation, rainfall and temperature in a West African savannah where seasonal precipitation determines annual variation in environmental conditions. We also pooled 65 breeding records from 19 individuals recorded between 2006 and 2017 based on brood patch occurrence and behavioural observation to compare within‐individual and population variability in breeding dates. We show that the breeding dates of individuals may be as variable as for the population as a whole. However, we observed a seasonal peak in juvenile occurrence that varies significantly between years. Models suggest no relationship between nesting and moult, and within‐year variation in rainfall and temperature, and birds were unlikely to breed during moult but may do so afterwards. Moult was very seasonal, correlating strongly with day length. We suggest that because environmental conditions permit year‐round breeding, and because reproductive output is subject to high predation risk, there is probably a weak selection for individuals to match breeding with variable peak conditions in the environment. Instead, moult, which always occurs annually and successfully, is probably under strong selection to match variable peak conditions in the environment so that long‐term survival ensures future reproduction.  相似文献   

11.
D. D. B. Summers 《Ibis》1972,114(1):79-88
Japanese Quail were kept in small cages under controlled conditions of temperature and light, and their pterylography and moult are described. There are 10 primaries, 14 secondaries and corresponding numbers of greater upper and lower wing coverts. The alula has four feathers and the tail from five to six pairs of feathers. There is an apterium in the dorso-pelvic tract similar to that in other quail genera. The arrangement of feathers in the ventral and cervical tracts appears to differ from that described for some North American quail.
The chicks hatch with a covering of natal down. Pre-juvenile moult can be seen when the chicks are three days old. Juvenile body plumage is complete in about 30 days; the sides of the face, around the eyes, are the last places to acquire feathers. The tenth and last juvenile primary to grow is mature when the chicks are 41 days old.
The moult in which the juvenile plumage is replaced overlaps the post-natal moult and in part of the ventral tract natal down is replaced by the first adult feathers. This makes it possible to sex the quail at 14 days old. The first adult moult is complete, in the body tracts, by the time the birds are five to six weeks old. The dropping of juvenile primaries commences at about three weeks old and ceases when about eight weeks old. Only from three to six primaries are replaced; most birds studied replaced five. The significance of this difference from other Galliformes is discussed; it is thought to be associated with the species' migratory behaviour. Quail which remained in the controlled laboratory environment did not undergo any further moult. All birds moulted when both temperature and light period were reduced and most birds moulted when the light period alone was reduced. Adult birds housed in small cages in an unheated, unlit shed underwent a complete moult between August and December in which all primaries were replaced. This moult took 8–14 weeks to complete.  相似文献   

12.
8. SHORT NOTES     
R. C. Bolster 《Ostrich》2013,84(2):107-108
Stutterheim, C. J. 1980. Moult cycle of the Redbilled Oxpecker in the Kruger National Park. Ostrich 51:107-112.

This paper describes the pattern and rate of the complete moult cycle in the Redbilled Oxpecker Buphagus er ythrorhynchus. The average duration of primary moult in adult birds was 340 days and the mean time to replace a primary feather was calculated as 34 days. The moult of the secondaries is initiated at two points, at the first secondary and at the innermost secondary. Secondary moult takes seven months. The differentiated inner secondaries moult in the normal middle/inner/outer passeriform fashion. The rectrices moulted only once annually. The two body moult cycles correspond with the moult of the differentiated inner secondaries. First-year birds undergo a partial postjuvenile feather replacement at three months of age.  相似文献   

13.
14.
The moult of Barred Warblers Sylvia nisoria was studied during three winter seasons in southeastern Kenya at a southward passage site (Ngulia) and a wintering site (Mtito Andei). Most Barred Warblers migrating through Ngulia in November had yet to commence winter moult. These birds probably moulted subsequently in winter in northern Tanzania. In December, birds were found in heavy moult at Mtito Andei, and some of these birds were known to stay throughout the winter. By contrast, most birds reaching southeastern Kenya from late December onwards had already completed part or all of their winter moult, presumably at stopover sites in northern and eastern Kenya or in Ethiopia. Thus, winter moult in Barred Warblers takes place mainly in late November and December, either just before or soon after the final leg of autumn migration. In general, first-year birds renewed all tertials and tail feathers, about three to five secondaries per wing and commonly also the outer one to four large primaries per wing. Adults renewed all tertials and tail feathers, almost all secondaries and only occasionally an outer primary. The replacement of relatively fresh juvenile secondaries during the birds' first winter implies that the split moult pattern of this species (secondaries, tertials and tail moulted in winter; primaries and tertials in summer) is endogenously controlled.  相似文献   

15.
Although feathers are the unifying characteristic of all birds, our understanding of the causes, mechanisms, patterns and consequences of the feather moult process lags behind that of other major avian life‐history phenomena such as reproduction and long‐distance migration. Migration, which evolved in many species of the temperate and arctic zones, requires high energy expenditure to endure long‐distance journeys. About a third of Western‐Palearctic passerines perform long‐distance migrations of thousands of kilometres each year using various morphological, physiological, biomechanical, behavioural and life‐history adaptations. The need to include the largely non‐overlapping breeding, long‐distance migration and feather moult processes within the annual cycle imposes a substantial constraint on the time over which the moult process can take place. Here, we review four feather‐moult‐related adaptations which, likely due to time constraints, evolved among long‐distance Western‐Palearctic migrants: (i) increased moult speed; (ii) increased overlap between moult and breeding or migration; (iii) decreased extent of plumage moult; and (iv) moult of part or all of the plumage during the over‐wintering period in the tropics rather than in the breeding areas. We suggest that long‐distance migration shaped the evolution of moult strategies and increased the diversity of these strategies among migratory passerines. In contrast to this variation, all resident passerines in the Western Palearctic moult immediately after breeding by renewing the entire plumage of adults and in some species also juveniles, while in other species juvenile moult is partial. We identify important gaps in our current understanding of the moult process that should be addressed in the future. Notably, previous studies suggested that the ancestral moult strategy is a post‐breeding summer moult in the Western Palearctic breeding areas and that moult during the winter evolved due to the scheduling of long‐distance migration immediately after breeding. We offer an alternative hypothesis based on the notion of southern ancestry, proposing that the ancestral moult strategy was a complete moult during the ‘northern winter’ in the Afro‐tropical region in these species, for both adults and juveniles. An important aspect of the observed variation in moult strategies relates to their control mechanisms and we suggest that there is insufficient knowledge regarding the physiological mechanisms that are involved, and whether they are genetically fixed or shaped by environmental factors. Finally, research effort is needed on how global climate changes may influence avian annual routines by altering the scheduling of major processes such as long‐distance migration and feather moult.  相似文献   

16.
Some theories about moult strategies of Palaearctic passerine migrants assume that birds adapt timing of moult to environmental conditions such as rainfall on their African wintering grounds. Species wintering in the northern tropics should limit moult to the period shortly after their arrival at the end of the rainy season. Passerine migrants wintering in West Africa should also moult more rapidly compared to related species or conspecific populations that moult elsewhere. We investigated the moult of melodious warblers Hippolais polyglotta, willow warblers Phylloscopus trochilus and pied flycatchers Ficedula hypoleuca wintering in Comoé National Park, Ivory Coast, between October 1994 and April 1998. In contrast to previous studies we did not restrict our analyses to moult of flight feathers but also included moult of body feathers. The results differed partially from the general assumptions of previous authors. Melodious warblers moulted twice: a complete moult shortly after their arrival, and a moult of body feathers and in some cases some tertials and secondaries in spring. Willow warblers moulting flight feathers were found between December and March with the majority moulting in January and February. Primary moult was not faster compared to populations moulting in central Africa and South Africa. Body feather moult varied strongly among individuals with birds in heavy moult between December and April. Pied flycatchers moulted body feathers and tertials between January and April. Birds with growing feathers were found throughout the whole period including the entire dry season. Moult strategies are thus not readily related to a few environmental factors in general and our results show that factors other than mere resource availability during certain times on the wintering grounds are likely to govern the timing of moult.Communicated by F.Bairlein  相似文献   

17.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

18.
Moult data from 302 museum skins and 11 trapped birds from sub-Saharan Africa show the course of flight feather moult. Most birds seem to start flight-feather moult soon after arrival in their southern African non-breeding ranges. About 75% of the birds had started before mid-December, i.e., during the main arrival time of the species. The mode of moult scores 1 and 2 was reached on 7 December; the last birds with a score of zero occurred in the first days of January. The mode of moult scores 5 and 6 was reached on 27 February. Thus, the time elapsed between the days when 50% of the population had reached the first and last stages of recorded moult was about 82 days; nine days later 75% had reached this last stage before moult was completed. Thus, individual moult may be estimated to cover about 80–90 days. The main moulting period is between mid-November and mid-March, thus covering about four months. No temporal difference was detected between males and females. A tendency for an advancement of adults compared to young birds was not statistically significant. According to the progress of the moult, sexing of young birds in the field is possible for 50% of the birds towards the end of January and for most birds before mid-February.  相似文献   

19.
Iridescent colours produced during moult likely play an important role in pair formation in birds. We sought to quantify geographic variation in such colouration in a duck species, Eurasian teal Anas crecca, in winter (when mating occurs) to evaluate whether this variation reflects birds’ breeding origins or differential individual migration strategies in both males and females. We combined information on feather production region and individual attributes (body size, sex and age) of Eurasian teal from 82 wintering sites in France. Feather production region (moult site or natal origin) was inferred using feather deuterium values (δDf). We performed spectral measurements to evaluate speculum colour and brightness contrasts for 1052 teal collected over four years. Colouration differed strongly among wintering regions, with birds wintering in eastern France exhibiting higher colour contrast than those wintering in the west. Body size and colouration were positively related. There were no differences in cohort‐specific δDf values between separate wintering regions in France, indicating that within a winter quarter teal originated from areas across the entire breeding range. Overall, patterns of spatial variation in feather colouration were related most closely to body size which was consistent with predictions of a differential migration hypothesis, with larger and more colour‐contrasting birds wintering closer to their breeding grounds. Because moult speed is also known to affect colour production, early breeders or individuals that skipped reproduction may have invested more or earlier in their feather quality to gain potential advantages in monopolizing future mates.  相似文献   

20.
Graham M.  Lenton 《Ibis》1984,126(2):188-197
Moult in Malayan Barn Owls Tyto alba was studied in two pairs of wild collected captive birds and from feathers taken from nest sites throughout peninsular Malaysia.
Post-juvenile captive birds moulted nearly to completion prior to first breeding, beginning with P6 at a mean age of 301.5 days. This contrasted with the only other study of moult in captive Barn Ow-Is in Germany when moult began at an age of 400 days, and then continued for a protracted period of two years separated by a suspension of moult during the normal breeding season.
The complex sequence of moult in primaries and secondaries both in the Malayan and German birds was similar.
Moult among adult Malayan birds in the wild showed a broad and somebyhat irregular seasonal trend With lower incidence during peak breeding periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号