首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
In contrast to the majority of vertebrate species, primary male parental care is common in fishes and encompasses a remarkable diversity of adaptations. Seahorses and pipefishes (Family Syngnathidae) exhibit some of the most specialized forms of paternal care in animals and so are ideally suited to the study of the evolution of male parental care. During mating, female syngnathids transfer eggs to specialized morphological structures that are located on either the abdomen or tail of the male. The male provides all postfertilization parental care and has morphological and physiological adaptations to osmoregulate, aerate, and even nourish the developing embryos. While all syngnathid species are adapted for paternal care, the brooding structure with which this is accomplished varies between species, from simple ventral gluing areas to much more complex structures such as the completely enclosed pouches of the seahorses. Our combined cytochrome b-, 12S rDNA-, and 16S rDNA-based molecular phylogeny of syngnathid fishes demonstrates that rapid diversification of male brooding structures has been associated with the major evolutionary radiation of the group, suggesting that development and diversification of structures involved in paternal care may have been key evolutionary innovations of the Syngnathidae. Molecular analyses also highlight geographical centers of biodiversity and suggest interoceanic migration of Syngnathus pipefishes from their center of origin in the Pacific.  相似文献   

2.
In pipefishes and seahorses (family Syngnathidae), the males provide all postzygotic care of offspring by brooding embryos on their ventral surfaces. In some species, this phenomenon of male "pregnancy" results in a reversal of the usual direction of sexual selection, such that females compete more than males for access to mates, and secondary sexual characteristics evolve in females. Thus the syngnathids can provide critical tests of theories related to the evolution of sex differences and sexual selection. Microsatellite-based studies of the genetic mating systems of several species of pipefishes and seahorses have provided insights into important aspects of the natural history and evolution of these fishes. First, males of species with completely enclosed pouches have complete confidence of paternity, as might be predicted from parental investment theory for species in which males invest so heavily in offspring. Second, a wide range of genetic mating systems have been documented in nature, including genetic monogamy in a seahorse, polygynandry in two species of pipefish, and polyandry in a third pipefish species. The genetic mating systems appear to be causally related to the intensity of sexual selection, with secondary sex characters evolving most often in females of the more polyandrous species. Third, genetic studies of captive-breeding pipefish suggest that the sexual selection gradient (or Bateman gradient) may be a substantially better method for characterizing the mating system than previously available techniques. Finally, these genetic studies of syngnathid mating systems have led to some general insights into the occurrence of clustered mutations at microsatellite loci, the utility of linked loci in studies of parentage, and the use of parentage data for direct estimation of adult population size.  相似文献   

3.
Sexual selection theory predicts a positive correlation between relative parental investment and mate choice. In syngnathid fishes (seahorses and pipefish), males brood offspring in specialized brooding structures. While female-female mating competition has been demonstrated in some pipefishes, all seahorses (genus Hippocampus) studied to date have been found to have conventional sex roles with greater male-male competition for access to mates despite possessing the most complex brood structures in the family. Although multiple mating is common in pipefish, seahorses are again exceptional, exhibiting strict genetic monogamy. Both demographic and behavioural explanations have been offered to explain the lack of multiple mating in seahorse species, but these hypotheses have not yet been explicitly addressed. We investigated mating systems and brood parentage of the pot-bellied seahorse, Hippocampus abdominalis, a temperate-water species that is socially promiscuous with conventional sex roles in laboratory populations. We observed promiscuous courtship behaviour and sex-role reversal in high density, female-biased field populations of H. abdominalis. We hypothesize that sex roles are plastic in H. abdominalis, depending on local population density and sex ratio. Despite promiscuous courtship behaviour, all assayed male seahorses were genetically monogamous in both laboratory and wild populations. Physiological limitations associated with embryo incubation may explain the absence of multiple mating in seahorses and may have played an important role in the development of the unique reproductive behaviour typical in these species.  相似文献   

4.
Highly variable microsatellite loci were used to study the mating system of Nerophis ophidion, a species of pipefish in which pregnant males carry embryos on the outside of their body rather than in an enclosed brood pouch. Despite this mode of external fertilization and brooding, otherwise rare in the family Syngnathidae, the genotypes of all embryos proved to be consistent with paternity by the tending male, thus indicating that cuckoldry by sneaker males is rare or nonexistent in this species. N. ophidion is a phylogenetic outlier within the Syngnathidae and its reproductive morphology is thought to be close to the presumed ancestral condition for pipefishes and seahorses. Thus, our genetic results suggest that the evolutionary elaboration of the enclosed brood pouch elsewhere in the family was probably not in response to selection pressures on pregnant males to avoid fertilization thievery. With regard to maternity assignments, our genotypic data are consistent with behavioural observations indicating that females sometimes mate with more than one male during a breeding episode, and that each male carries eggs from a single female. Thus, the polyandrous genetic mating system in this species parallels the social mating system, and both are consistent with a more intense sexual selection operating on females, and the elaboration of secondary sexual characters in that gender.  相似文献   

5.
Male pregnancy in the family Syngnathidae (pipefishes, seahorses and seadragons) predisposes males to limit female reproductive success; sexual selection may then operate more strongly on females and female sexual signals may evolve (sex-role reversal). A bewildering array of female signals has evolved in Syngnathids, e.g. skin folds, large body size, colouration, markings on the body and elaborate courtship. These female sexual signals do not seem quantitatively or qualitatively different from those that evolve in males in species with conventional sex roles where males provide females or offspring with direct benefits. In several syngnathid species, males also evolve ornaments, females are choosy in addition to being competitive and males compete as well as choosing partners. Thus, sex roles form a continuum, spanning from conventional to reversed within this group of fishes. Cases are presented here suggesting that stronger sexual selection on females may be most extreme in species showing classical polyandry (one male mates with several females, such as many species where males brood their eggs on the trunk), intermediate in polygynandrous species (males and females both mate with more than one partner, as in many species where males brood their eggs on the tail) and least extreme, even exhibiting conventional sex roles, in monogamous species (one male mates solely with one female, as in many seahorses and tropical pipefishes). At the same time caution is needed before unanimously establishing this pattern: first, the connection between mating patterns, strength of sexual selection, sex roles and ornament expression is far from simple and straightforward, and second, knowledge of the actual morphology, ecology and behaviour of most syngnathid species is scanty. Basically only a few Nerophis, Syngnathus and Hippocampus species have been studied in any detail. It is known, however, that this group of fishes exhibits a remarkable variation in sex roles and ornamentation, making them an ideal group for the study of mating patterns, sexual selection and sexually selected signals.  相似文献   

6.
Due to the phenomenon of male pregnancy, the fish family Syngnathidae (seahorses and pipefishes) has historically been considered an archetypal example of a group in which sexual selection should act more strongly on females than on males. However, more recent work has called into question the idea that all species with male pregnancy are sex-role reversed with respect to the intensity of sexual selection. Furthermore, no studies have formally quantified the opportunity for sexual selection in any natural breeding assemblage of pipefishes or seahorses in order to demonstrate conclusively that sexual selection acts most strongly on females. Here, we use a DNA-based study of parentage in the Gulf pipefish Syngnathus scovelli in order to show that sexual selection indeed acts more strongly on females than on males in this species. Moreover, the Gulf pipefish exhibits classical polyandry with the greatest asymmetry in reproductive roles (as quantified by variances in mating success) between males and females yet documented in any system. Thus, the intensity of sexual selection on females in pipefish rivals that of any other taxon yet studied.  相似文献   

7.
The feeding apparatus of Syngnathidae, with its elongate tubular snout and tiny, toothless jaws, is highly specialized for performing fast and powerful pivot feeding. In addition, the prolonged syngnathid parental care probably enables the juveniles to be provided with a feeding apparatus that resembles the one in adults, both in morphology and function. In this study, a landmark‐based geometric morphometric analysis was carried out on the head of syngnathid representatives in order to (1) examine to what degree pipefish shape variation is different from that of seahorses; (2) determine whether the high level of specialization reduces the amount of intraspecific morphological variation found within the family; and (3) elucidate whether or not important shape changes occur in the seahorse head during postrelease ontogeny. We found that (1) there is a significant shape difference between head shape of pipefish and seahorse: the main differences concern snout length and height, position and orientation of the pectoral fin base, and height of the head and opercular bone. We hypothesize that this might be related to different prey capture kinematics (long snout with little head rotation versus short snout with large head rotation) and to different body postures (in line with the head versus vertical with a tilted head) in pipefishes and seahorses; (2) both pipefishes and seahorses showed an inverse relation between relative snout length and intraspecific variation and although pipefishes show a large diversity in relative snout elongation, they are more constrained in terms of head shape; and (3) the head of juvenile Hippocampus reidi specimens still undergoes gradual shape changes after being expelled from the brood pouch. Ontogenetic changes include lowering of the snout and head but also differences in orientation of the preopercular bone and lowering of the snout tip. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
The seahorses, pipefishes and seadragons (Syngnathidae) are among the few vertebrates in which pregnant males incubate developing embryos. Syngnathids are popular in studies of sexual selection, sex‐role reversal, and reproductive trade‐offs, and are now emerging as valuable comparative models for the study of the biology and evolution of reproductive complexity. These fish offer the opportunity to examine the physiology, behavioural implications, and evolutionary origins of embryo incubation, independent of the female reproductive tract and female hormonal milieu. Such studies allow us to examine flexibility in regulatory systems, by determining whether the pathways underpinning female pregnancy are also co‐opted in incubating males, or whether novel pathways have evolved in response to the common challenges imposed by incubating developing embryos and releasing live young. The Syngnathidae are also ideal for studies of the evolution of reproductive complexity, because they exhibit multiple parallel origins of complex reproductive phenotypes. Here we assay the taxonomic distribution of syngnathid parity mode, examine the selective pressures that may have led to the emergence of male pregnancy, describe the biology of syngnathid reproduction, and highlight pressing areas for future research. Experimental tests of a range of hypotheses, including many generated with genomic tools, are required to inform overarching theories about the fitness implications of pregnancy and the evolution of male pregnancy. Such information will be widely applicable to our understanding of fundamental reproductive and evolutionary processes in animals.  相似文献   

9.
Brain size varies greatly at all taxonomic levels. Feeding ecology, life history and sexual selection have been proposed as key components in generating contemporary diversity in brain size across vertebrates. Analyses of brain size evolution have, however, been limited to lineages where males predominantly compete for mating and females choose mates. Here, we present the first original data set of brain sizes in pipefishes and seahorses (Syngnathidae) a group in which intense female mating competition occurs in many species. After controlling for the effect of shared ancestry and overall body size, brain size was positively correlated with relative snout length. Moreover, we found that females, on average, had 4.3% heavier brains than males and that polyandrous species demonstrated more pronounced (11.7%) female‐biased brain size dimorphism. Our results suggest that adaptations for feeding on mobile prey items and sexual selection in females are important factors in brain size evolution of pipefishes and seahorses. Most importantly, our study supports the idea that sexual selection plays a major role in brain size evolution, regardless of on which sex sexual selection acts stronger.  相似文献   

10.
Externally fertilizing fishes are predicted to invest heavily in testes, because large numbers of sperm should be favoured by the high risk of sperm competition from sneaker males, and/or the dilution of ejaculates when shed into open water. Using museum specimens, we measured testes mass and body mass of 83 mature males, belonging to 21 genera of the family Syngnathidae (pipefishes and seahorses). In this family all species show paternal care, ranging in degree from eggs being attached to the skin of the male, to eggs being completely enclosed and nurtured within a brood pouch. The former, 'unprotected' group, is thought to have external fertilization, whereas in the latter, 'protected' group, males fertilize the eggs internally in their brood pouch. Smaller relative testes investment was thus predicted for genera that have protected compared with unprotected brood care. However, we found this not to be the case. Instead, all genera showed the same relationship between testes and body mass, regardless of brooding type. The possible implications of this surprising result are discussed, including the possibility that the mode of fertilization might have been misjudged for the pouchless syngnathids.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 369–376.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号