首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In a recent letter to the editor, Jørgensen et al. questioned that life cycle costing (LCC) is relevant in life cycle-based sustainability assessment (LCSA). They hold the opinion that environmental and social aspects are sufficient. We argue that sustainability has three dimensions: environment, economy, and social aspects in accordance with the well-accepted “three pillar interpretation” of sustainability, although this is not verbally stated in the Brundtland report (WCED 1987). An analysis of the historical development of the term “sustainability” shows that the economic and social component have been present from the beginning and conclude that LCSA of product systems can be approximated by LCSA = (environmental) LCA + (environmental) LCC + S-LCA where S-LCA stands for social LCA. The “environmental” LCC is fully compatible with life cycle assessment (LCA), the internationally standardized (ISO 14040 + 14044) method for environmental product assessment. For LCC, a SETAC “Code of Practice” is now available and guidelines for S-LCA have been published by UNEP/SETAC. First examples for the use of these guidelines have been published. An important practical argument for using LCC from the customers’ point of view is that environmentally preferable products often have higher purchasing costs, whereas the LCC may be much lower (examples: energy saving light bulbs, low energy houses, and cars). Also, since LCC allows an assessment for different actor perspectives, the producers may try to keep the total costs from their perspective below those of a conventional product: otherwise, it will not succeed at the market, unless highly subsidized. Those are practical aspects whichfinally decide about success or failure of “sustainable” products. Whether or not an analysis using all three aspects is necessary will depend on the exact question. However, if real money flows are important in sustainability analysis of product systems, inclusion of LCC is advisable.  相似文献   

2.

Methods  

The main objective of this study is to combine the environmental evaluation of a basic wood box used to store wine bottles by means of the integration of two environmental methodologies: a quantitative methodology known as life cycle assessment (LCA) and a qualitative methodology which is useful in integrating environmental aspects into design, that is, the design for the environment (DfE). The LCA study covers the life cycle of wood box production from a cradle-to-gate perspective. A wood processing company located in Galicia (NW, Spain) was analysed in detail, dividing the process chain into five stages: cogeneration unit, material assembling, painting, packaging and distribution to clients.  相似文献   

3.

Purpose

Life cycle assessment (LCA) has not been widely applied in the building design process because it is perceived to be complex and time-consuming. There is a high demand for simplified approaches that architects can use without detailed knowledge of LCA. This paper presents a parametric LCA approach, which allows architects to efficiently reduce the environmental impact of building designs.

Methods

First, the requirements for design-integrated LCA are analyzed. Then, assumptions to simplify the required data input are made and a parametric model is established. The model parametrizes all input, including building geometry, materials, and boundary conditions, and calculates the LCA in real time. The parametric approach possesses the advantage that input parameters can be adjusted easily and quickly. The architect has two options to improve the design: either through manually changing geometry, building materials, and building services, or through the use of an optimization solver. The parametric model was implemented in a parametric design software and applied using two cases: (a) the design of a new multi-residential building, and (b) retrofitting of a single-family house.

Results and discussion

We have successfully demonstrated the capability of the approach to find a solution with minimum environmental impact for both examples. In the first example, the parametric method is used to manually compare geometric design variants. The LCA is calculated based on assumptions for materials and building services. In the second example, evolutionary algorithms are employed to find the optimum combination of insulation material, heating system, and windows for retrofitting. We find that there is not one optimum insulation thickness, but many optima, depending on the individual boundary conditions and the chosen environmental indicator.

Conclusions

By incorporating a simplified LCA into the design process, the additional effort of performing LCA is minimized. The parametric approach allows the architect to focus on his main task of designing the building and finally makes LCA practically useful for design optimization. In the future, further performance analysis capabilities such as life cycle costing can also be integrated.
  相似文献   

4.

Purpose

Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win–win or trade-off situations will be identified via a life cycle assessment/life cycle costing (LCA/LCC) integrated model.

Methods

The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the life cycle inventory and the life cycle impact assessment.

Results and discussion

In both the SST and CST systems, the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win–win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its end-of-life stage.

Conclusions

The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Furthermore, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company or, in some cases, even in its procurement practices.  相似文献   

5.
We present a life cycle assessment (LCA) of the operation of Casey Station in Antarctica. The LCA included quantifying material and energy flows, modeling of elementary flows, and subsequent environmental impacts. Environmental impacts were dominated by emissions associated with freight operations and electricity cogeneration. A participatory design approach was used to identify options to reduce environmental impacts, which included improving freight efficiency, reducing the temperature setpoint of the living quarters, and installing alternative energy systems. These options were then assessed using LCA, and have the potential to reduce environmental impacts by between 2% and 19.1%, depending on the environmental indicator.  相似文献   

6.
Life cycle assessment of contaminated sites remediation   总被引:1,自引:0,他引:1  
For the federal state of Baden-Wiirttemberg, Germany, the decision tool “Umweltbilanz von Altlastensanierungsverfahren” has been developed and found suitable for the quantification and evaluation of environmental impacts caused by remediation of contaminated sites. The developed tool complements the remediation toolbox of Baden-Wiirttemberg. The tool includes a streamlined life cycle assessment (LCA) and a synopsis of the LCA results with the results of a risk assessment of the contaminated site. The risk assessment tool is not explained here. The data base for the life cycle inventory includes several techniques used in remedial actions. The life cycle impact assessment utilises 14 impact categories. The method allows comparisons between remedial options for specific contaminated sites. A software tool has been developed to be available in 1999.  相似文献   

7.
赵薇  孙一桢  张文宇  梁赛 《生态学报》2016,36(22):7208-7216
我国生活垃圾产量大但处理能力不足,产生多种环境危害,对其资源化利用能够缓解环境压力并回收资源。为探讨生活垃圾资源化利用策略,综合生命周期评价与生命周期成本分析方法,建立生态效率模型。以天津市为例,分析和比较焚烧发电、卫生填埋-填埋气发电、与堆肥+卫生填埋3种典型生活垃圾资源化利用情景的生态效率。结果表明,堆肥+卫生填埋情景具有潜在最优生态效率;全球变暖对总环境影响贡献最大,而投资成本对经济影响贡献最大。考虑天津市生活垃圾管理现状,建议鼓励发展生活垃圾干湿组分分离及厨余垃圾堆肥的资源化利用策略。  相似文献   

8.
Purpose

Industrial symbiosis network (ISN) facilitation tools seek to holistically evaluate the environmental and economic performance of ISNs through life cycle assessment (LCA) and life cycle costing (LCC). ISNs have many stakeholders with diverse interests in the LCA and LCC results thus requiring multi-level analysis. The objective of this review was to examine the state-of-the-art methodologies used in LCAs and LCCs of ISNs and understand how multi-level analysis can be conducted.

Methods

The systematic literature review methodology was applied to develop a corpus of peer-reviewed LCA and LCC studies of ISNs published between 2010 and 2019 without any geographic boundary. Abstracts were reviewed to shortlist studies that conducted an LCA or LCC of an ISN with numerical results. LCA and LCC methodologies used in the shortlisted studies were collected and categorized. Each methodology was examined to understand how the foreground and background systems are represented, how waste-to-resource exchanges are analyzed, and how the results can be computed at the network, entity, and flow levels.

Results and discussion

The review yielded 42 LCA studies and 11 LCC studies of ISNs that used eight different methodologies. Process-based LCA was used in 71% of the LCA studies, whereas tiered hybrid LCA was used in 14% of the studies. Waste-to-resource exchanges in ISN scenarios were represented either through process analysis or as a black box. Fewer LCC studies that evaluate the economic performance of ISNs exist compared with LCA studies. Economic studies often evaluated financial feasibility, net present value, profitability, or payback period of specific waste-to-resource exchanges or the network overall.

Conclusions

The insights derived from this review chart future areas of research in multi-level modeling and analysis of the life cycle environmental and economic performance of ISNs. To improve the model construction and analysis process, research should be explored in developing a methodology for constructing a single model that represents multiple entities linked together by waste-to-resource exchanges and can provide LCA and LCC results for different stakeholder perspectives. The lack of LCC studies of ISNs merits the need for more research in this area at both the network and entity levels to quantify potential economic trade-offs between stakeholders. Developing a methodology for unified LCA and LCC modeling and analysis of ISNs can help ISN facilitation tool developers conduct simultaneous life cycle environmental and economic analysis of the potential symbiosis connections identified and how they contribute to the overall network.

  相似文献   

9.

Aim and Background  

Many analytical tools have been developed to support the implementation of sustainable development. Principal among these are the ones that are based on physical aspects such as life cycle assessment (LCA), while others focus on non-physical aspects, namely on monetary concepts, such as life cycle costing and total cost assessment. Each kind of tool is designed to assess a specific aspect (environmental or economic) of the entire life of a good or a service. Unfortunately, even if the literature clearly states the advantage of combining these tools, case studies with global conclusions considering both aspects are still rare. Most often, studies conclude separately on each aspect; environmental impact and cost assessment.  相似文献   

10.
The overall reduction of the environmental impact by the use of selective catalytic reduction (SCR) of nitrogen oxide emissions in power plants was determined by strict application of ISO 14040 and ISO/DIS 14041. Special emphasis was placed on the implementation of the total product life cycle (PLC) of ammonium molybdate as a key input material. The environmental impact was generated by application of the life cycle assessment (LCA) concept of “ecoscarcity” and integrated in the life cycle inventory analysis (LCI) of SCR systems. The LCI was used to generate the life cycle impact assessment (LC1A) by use of different quantitative valuation methods. Under consideration of the overall LCIA results and the environmental protection costs of the SCR variants, the Ecological Effectiveness of the SCR alternatives was determined. The results enable plausible conclusions with regard to the ecological advantages of the use of deNOx catalysts in the SCR used in hard-coal fired power plants.  相似文献   

11.
The growing availability of software tools has increased the speed of generating LCA studies. Databases and visual tools for constructing material balance modules greatly facilitate the process of analyzing the environmental aspects of product systems over their life cycle. A robust software tool, containing a large LCI dataset and functions for performing LCIA and sensitivity analysis will allow companies and LCA practitioners to conduct systems analyses efficiently and reliably. This paper discusses how the GaBi 3 software tool can be used to perform LCA and Life Cycle Engineering (LCE), a methodology that combines life cycle economic, environmental, and technology assessment. The paper highlights important attributes of LCA software tools, including high quality, well-documented data, transparency in modeling, and data analysis functionality. An example of a regional power grid mix model is used to illustrate the versatility of GaBi 3.  相似文献   

12.
The discussion forum on life cycle assessment (LCA) on September 15, 2011, aimed at summarizing recent environmentally extended input?Coutput analysis (EE-IOA) and the combination with LCA for the computation of environmental impact of imports. Input?Coutput tables (IOT) represent the financial flows in a country or economic regions. Extending IOT with information on emissions and resource uses allows for the analysis of environmental impacts due to production and consumption activities in a country. This instrument is called EE-IOA. It enables the analysis of total environmental impacts of countries or economic regions. The combination with trade statistics and LCA was presented as an alternative to multiregional input?Coutput models for determining environmental impacts of imports over the whole life cycle. The 45th LCA forum gathered several international speakers who provided a broad and qualified view on the topic. The theoretical background, results for different countries and regions, uncertainties, and possible improvement options for EE-IOA were discussed. The following main conclusions were drawn at the end of the discussion forum: EE-IOA is a useful instrument for analyzing the total environmental impacts of countries and the main drivers of environmental impacts. As a next important step, the participants would like to see an increase in user friendliness of EE-IOA combined with LCA, e.g., by harmonizing data, data formats, and classifications.  相似文献   

13.

Introduction  

Waste management is a key component in society's strategy to mitigate the adverse effects of its economic activities. Through its comprehensive system approach, life cycle assessment (LCA) is frequently put forward as a powerful tool for the assessment of waste management activities. However, many methodological challenges regarding the environmental assessment of waste treatment systems still remain, and consensus is still far from being reached in areas like the definition of (temporal) system boundaries, life cycle inventory generation, selection and use of environmental indicators, and interpretation and communication of the LCA results.  相似文献   

14.
Purpose

The main objective of this paper is to develop a model that will combine economic and environmental assessment tools to support the composite material selection of aircraft structures in the early phases of design and application of the tool for an aircraft elevator.

Methods

An integrated life cycle cost (LCC) and life cycle assessment (LCA) methodology was used as part of the sustainable design approach for the laminate stacking sequence design. The model considered is the aircraft structure made of carbon fiber reinforce plastic prepreg and processed via hand layup-autoclave process which is the preferred method for the aircraft industry. The model was applied to a cargo aircraft elevator case study by comparing six different laminate configurations and two different carbon fiber prepreg materials across aircraft’s entire life cycle.

Results and discussion

The results show, in line with other studies using different methodologies (e.g., life cycle engineering, or LCE), that the combination of LCA with LCC is a worthwhile approach for comparing the different laminate configurations in terms of cost and environmental impact to support composite laminate stacking design by providing the best trade-off between cost and environment. Elevator LCC reduces 19% by changing the material type and applying different ply orientations. Elevator LCA score reduces 53% by selecting the optimum instead of best technical solution that minimizes the displacement. Improving the structural performance does not always lead to an increase in the cost.

  相似文献   

15.
Goal, Scope and Background Ecodesign requires environmental assessment methods, which are often time consuming and cost intensive. In this paper we proposed a method that combines top-down (e.g. LCA) and bottom-up (e.g. UNEP) approaches that allows one within short period of time to generate ecodesign ideas by identifying what to improve, how much to improve, and how to improve within a short period of time. The proposed method incorporates an environmental assessment method for use in the ecodesign of consumer electronics that employs the top-down and bottom-up approaches simultaneously. Method The proposed method consists of five modules: A. a life cycle thinking for a product, B. environmental benchmarking, C. checklist method, D. ecodesign strategies, and E. environmental design information. A key life cycle stage with significant environmental impact is identified in module A. When the identified key life cycle stage is not product manufacturing, environmental benchmarking is used; however, a checklist method is applied if product manufacturing is identified as the key life cycle stage. Ecodesign strategies for consumer electronics are obtained in module D. Environmental design information is produced by linking both the top-down and bottom-up information in module E. Results and Discussion The applicability of the proposed method was evaluated using mobile phones. First, the key life cycle stage of the mobile phone was identified as the raw material acquisition stage. Next, environmental benchmarking was carried out for 10 parameters belonging to the raw material acquisition stage. Environmental target specifications for the 10 parameters were set, ranging from 14% to 60%. Finally, environmental design information for the mobile phone was determined by linking the target specifications of the environmental benchmarking parameters and the corresponding ecodesign strategies. The proposed method was also compared with the LCA and the UNEP/promising approaches, which are representative examples of the top-down approach and the bottom-up approach, respectively. Based on the results of this comparison, the proposed method was judged to be an advanced method in facilitating the generation of ecodesign ideas. Environmentally significant benchmarking parameters correspond to what to improve, target specifications to on how much to improve, and ecodesign strategies ton how to improve. It was found that the use of the proposed method minimizes the time and money expenditure by confining the identification of environmental weak points within the key life cycle stage. Conclusion and Outlook An environmental assessment method for consumer electronics in ecodesign was proposed and applied to mobile phones. The advantages of the proposed method are as follows: it is efficient and cost-effective, and it allows designers to generate ecodesign ideas more easily and effectively by simultaneously identifying the specific environmental weak points of a product and corresponding ecodesign strategies. The proposed method can be envisaged as a useful ecodesign approach when electronic companies identify the environmental aspects of their products and integrate them into product design and development process.  相似文献   

16.
Background, aim, and scope  This paper compares the life cycle assessment (LCA) of two packaging alternatives used for baby food produced by Nestlé: plastic pot and glass jar. The study considers the environmental impacts associated with packaging systems used to provide one baby food meal in France, Spain, and Germany in 2007. In addition, alternate logistical scenarios are considered which are independent of the two packaging options. The 200-g packaging size is selected as the basis for this study. Two other packaging sizes are assessed in the sensitivity analysis. Because results are intended to be disclosed to the public, this study underwent a critical review by an external panel of LCA experts. Materials and methods  The LCA is performed in accordance to the international standards ISO 14040 and ISO 14044. The packaging systems include the packaging production, the product assembly, the preservation process, the distribution, and the packaging end-of-life. The production of the content (before preservation process), as well as the use phase are not taken into account as they are considered not to change when changing packaging. The inventory is based on data obtained from the baby food producer and the suppliers, data from the scientific literature, and data from the ecoinvent database. Special care is taken to implement a system expansion approach for end-of-life open and closed loop recycling and energy production (ISO 14044). A comprehensive impact assessment is performed using two life cycle impact assessment methodologies: IMPACT 2002+ and CML 2001. An extensive uncertainty analysis using Monte Carlo as well as an extensive sensitivity study are performed on the inventory and the reference flows, respectively. Results  When looking at the impacts due to preservation process and packaging (considering identical distribution distances), we observe a small but significant environmental benefit of the plastic pot system over the glass jar system. Depending on the country, the impact is reduced by 14% to 27% for primary energy, 28% to 31% for global warming, 31% to 34% for respiratory inorganics, and 28% to 31% for terrestrial acidification/nutrification. The environmental benefit associated with the change in packaging mainly results from (a) production of plastic pot (including its end-of-life; 43% to 51% of total benefit), (b) lighter weight of packaging positively impacting transportation (20% to 35% of total benefit), and (c) new preservation process permitted by the plastic system (23% to 34% of total benefit). The jar or pot (including cap or lid, cluster, stretch film, and label) represents approximately half of the life cycle impacts, the logistics approximately one fourth, and the rest (especially on-site energy, tray, and hood) one fourth. Discussion  The sensitivity analysis shows that assumptions made in the basic scenarios are rather conservative for plastic pots and that the conclusions for the 200-g packaging size also apply to other packaging sizes. The uncertainty analysis performed on the inventory for the German market situation shows that the plastic pot system has less impact than the glass jar system while considering similar distribution distances with a confidence level above 97% for most impact categories. There is opportunity for further improvement independent of the type of packaging used, such as by reducing distribution distances while still optimizing lot size. The validity of the main conclusions presented in this study is confirmed by results of both impact assessment methodologies IMPACT 2002+ and CML 2001. Conclusions  For identical transportation distances, the plastic pot system shows a small but significant reduction in environmental burden compared to the glass jar system. Recommendations and perspectives  As food distribution plays an important role in the overall life cycle burdens and may vary between scenarios, it is important to avoid additional transportation of the packaged food in order to maintain or even improve the advantage of the plastic pot system. The present study focuses on the comparison of packaging systems and directly related consequences. It is recommended that further environmental optimization of the product also includes food manufacturing (before preservation process) and the supply chain of raw materials.  相似文献   

17.
Purpose

This paper provided an integrated method to evaluate environmental impact and life cycle cost (LCC) of various alternative design schemes in the early design and development stages of complex mechanical product; an optimization method of product design schemes based on life cycle assessment (LCA) and LCC is proposed as a supporting design tool to achieve optimal integration of environmental impact and cost of the design.

Methods

The applied research methods include product level deconstruction model, LCA/LCC integrated analysis model, and the product design scheme optimization method. In the life cycle environmental assessment, GaBi software and CML2001 evaluation method are used to evaluate product environmental impact. In terms of product design configuration scheme optimization, the TOPSIS method is used to optimize the design schemes generated. Taking the internal and external trim of automobile as an example, the specific implementation process of the method is illustrated.

Results and discussion

The case study indicates that, when comprehensively considering the environmental impact and cost, the composite indices of the optimal and worst schemes are 0.8667 and 0.3001, respectively; their costs are ¥164.87 and ¥179.68, respectively; and the eco points of environmental impact are 14.74 and 39.78, respectively. The cost of the two schemes are not much different, but the environmental impact of the optimal scheme is only 37.1% of the worst scheme’s; When cost is the only factor to be considered, the lowest cost design scheme is about 36.7% of the maximum scheme’s cost, and the environmental impact of the lowest cost design scheme is about 1.6 times of the maximum cost scheme’s. When environmental impact is the only factor to be considered, the least environmental impact of design scheme accounts about 31.7% of the largest; the cost of design scheme with the least environmental impact accounts for about 58.1% of the largest one’s. Integrating LCA and LCC, scientific suggestions can be provided from several perspectives.

Conclusions

By considering the environmental impact and LCC, this paper proposes a method of product design scheme optimization as a supporting design tool which could evaluate the design options of the product and identify the preferred option in the early stage of product design. It is helpful to realize the sustainability of the product. In order to improve the applicability of this method, the weighting factors of environmental impact and cost could be adjusted according to the requirements of energy saving and emission reduction of different enterprises.

  相似文献   

18.

Purpose

Built in 1941, the Progreso Pier was the first concrete structure in the world built with nickel-containing stainless steel reinforcement. The Pier has been in service for over 70 years without any significant repair or maintenance activities. The aim of this study was to understand the environmental and economic implications of selecting nickel-containing stainless steel reinforcement using the Progreso Pier as the case study.

Methods

A combined environmental life cycle assessment (LCA) and life cycle costing (LCC) study was conducted. The analysis considered the potential environmental impacts and the net present cost of the stainless steel reinforced structure from cradle to grave and compared it to the same structure using conventional carbon steel.

Results and discussion

The results indicated that while using stainless steel reinforcement resulted in a marginally higher environmental impact after initial construction, this is offset by the increased service life and, hence, less frequent maintenance and reconstruction activities. Relative to the as-built stainless steel reinforcement design, the environmental impacts of the carbon steel reinforced design are between 69 and 79 % higher over the analysis period. Similar observations were made for the other investigated impact categories. The cost implications of using stainless steel reinforcement show economic benefits that are complementary to the environmental benefits. Similar to the LCA, the service life benefits outweigh the higher unit costs for stainless steel, assuming a discount rate of 0.01 % as the baseline scenario. The carbon steel reinforced design has a net present cost that is 44 % higher than the as-built stainless steel reinforcement design. The crossover point for the two designs occurs at year 50, which corresponds to the reconstruction activity. A sensitivity analysis shows that the results and conclusions are sensitive to the choice in discount rate: Rates 3 % and lower produce net present costs that are lower for the as-built design; rates 4 % and higher produce net present costs that are lower for the alternative design.

Conclusions

The study demonstrates how LCA and LCC are complementary tools that can be used in decision-making for sustainable construction. The Progreso Pier exemplifies the importance of considering the entire life cycle with service life and recycling as well as long-term life cycle impacts of infrastructure projects from an environmental and economic perspective.
  相似文献   

19.

Purpose

Used cooking oil (UCO) is a domestic waste generated as the result of cooking and frying food with vegetable oil. The purpose of this study is to compare the sustainability of three domestic UCO collection systems: through schools (SCH), door-to-door (DTD), and through urban collection centres (UCC), to determine which systems should be promoted for the collection of UCO in cities in Mediterranean countries.

Methods

The present paper uses the recent life cycle sustainability assessment (LCSA) methodology. LCSA is the combination of life cycle assessment (LCA), life cycle costing, and social life cycle assessment (S-LCA).

Results and discussion

Of the three UCO collection systems compared, the results show that UCC presents the best values for sustainability assessment, followed by DTD and finally SCH system, although there are no substantial differences between DTD and SCH. UCC has the best environmental and economic performance but not for social component. DTD and SCH present suitable values for social performance but not for the environmental and economic components.

Conclusions

The environmental component improves when the collection points are near to citizens’ homes. Depending on the vehicle used in the collection process, the management costs and efficiency can improve. UCO collection systems that carry out different kind of waste (such as UCC) are more sustainable than those that collect only one type of waste. Regarding the methodology used in this paper, the sustainability assessment proposed is suitable for use in decision making to analyse processes, products or services, even so in social assessment an approach is needed to quantify the indicators. Defining units for sustainability quantification is a difficult task because not all social indicators are quantifiable and comparable; some need to be adapted, raising the subjectivity of the analysis. Research into S-LCA and LCSA is recent; more research is needed in order to improve the methodology.  相似文献   

20.
- Goal, Scope, Background. As of July 1st, 2006, lead will be banned in most solder pastes used in the electronics industry. This has called for environmental evaluation of alternatives to tin-lead solders. Our life cycle assessment (LCA) has two aims: (i) to compare attributional and consequential LCA methodologies, and (ii) to compare a SnPb solder (62% tin, 36% lead, 2% silver) to a Pb-free solder (95.5% tin, 3.8% silver, 0.7% copper). Methods An attributional LCA model describes the environmental impact of the solder life cycle. Ideally, it should include average data on each unit process within the life cycle. The model does not include unit processes other than those of the life cycle investigated, but significant cut-offs within the life cycle can be avoided through the use of environmentally expanded input-output tables. A consequential LCA model includes unit processes that are significantly affected irrespective of whether they are within or outside the life cycle. Ideally, it should include marginal data on bulk production processes in the background system. Our consequential LCA model includes economic partial equilibrium models of the lead and scrap lead markets. However, both our LCA models are based on data from the literature or from individual production sites. The partial equilibrium models are based on assumptions. The life cycle impact assessment is restricted to global warming potential (GWP). Results and Discussion The attributional LCA demonstrates the obvious fact that the shift from SnPb to Pb-free solder means that lead is more or less eliminated from the solder life cycle. The attributional LCA results also indicate that the Pb-free option contributes 10% more to the GWP than SnPb. Despite the poor quality of the data, the consequential LCA demonstrates that, when lead use is eliminated from the solder life cycle, the effect is partly offset by increased lead use in batteries and other products. This shift can contribute to environmental improvement because lead emissions are likely to be greatly reduced, while batteries can contribute to reducing GWP, thereby offsetting part of the GWP increase in the solder life cycle. Conclusions The shift from SnPb to Pb-free solder is likely to result in reduced lead emissions and increased GWP. Attributional and consequential LCAs yield complementary knowledge on the consequences of this shift in solder pastes. At present, consequential LCA is hampered by the lack of readily available marginal data and the lack of input data to economic partial equilibrium models. However, when the input to a consequential LCA model is in the form of quantitative assumptions based on a semi-qualitative discussion, the model can still generate new knowledge. Recommendations and Outlook Experts on partial equilibrium models should be involved in consequential LCA modeling in order to improve the input data on price elasticity, marginal production, and marginal consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号