首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
目前,有关同义密码子使用偏性对蛋白质折叠的影响研究中,样本蛋白均来源于不同的物种。考虑到同义密码子使用偏性的物种差异性,选取枯草杆菌的核蛋白为研究对象。首先,将每条核蛋白按二级结构截取为α螺旋片段、β折叠片段和无规卷曲(α-β混合)片段,并计算其蛋白质折叠速率。然后,整理每个片段相应的核酸序列信息,计算其同义密码子使用度。在此基础上,分析枯草芽孢杆菌核蛋白的同义密码子使用偏性与蛋白质折叠速率的相关性。发现对于不同二级结构的肽链片段,都有部分密码子的使用偏性与其对应的肽链折叠速率显著相关。进一步分析发现,与肽链片段折叠速率显著相关的密码子绝大部分为枯草杆菌全序列或核蛋白序列的每一组同义密码子中使用度最高的密码子。结果表明,在蛋白质的折叠过程中,枯草芽孢杆菌的同义密码子使用偏性起着重要作用。  相似文献   

2.
在基因组学水平上研究密码子使用偏性模式、成因并分析进化过程中的选择压力在基因组学研究中有重要意义。文章概述了目前提出的密码子使用偏性的量化方法及实现原理。目前研究发现:有些量化密码子偏性的方法受高表达基因参考数据集未完全注释的限制,不同密码子位置对变异和选择的影响不同,以及不同密码子位置处GC含量和嘌呤含量的贡献不同。由此展望密码子偏性量化方法发展方向为:需要设计不需要相关参考基因集合先验知识的密码子使用偏性量化方法;考虑不同位置处背景核苷酸组成的密码子使用偏性的量化方法;同时考虑基因表达水平的密码子使用偏性量化方法。最后,归纳了目前可用的密码子使用偏性的量化工具和数据库。  相似文献   

3.
以A型流感病毒为研究样本,分析了同义密码子使用偏性对RNA二级结构的影响,为进一步研究同义密码子存在的意义及A型流感病毒RNA特征提供一些理论依据。收集整理了NCBI中收录的全部A型流感病毒的核酸序列信息,计算了每一条核酸序列的RNA二级结构,计算出RNA环结构含量和茎结构含量及折叠自由能。在此基础上,计算了RNA二级结构的柔性。同时,计算了每一条核酸序列的相对同义密码子使用值。由此,建立了A型流感病毒RNA二级结构数据库。分析每条核酸序列的相对同义密码子使用值与RNA的环结构、茎结构及柔性之间的关系。分析结果表明,50%的氨基酸的相对同义密码子使用值与RNA茎结构含量和环结构含量显著相关;60%的氨基酸的相对同义密码子使用值与单位平均折叠自由能显著相关;50%的氨基酸的相对同义密码子使用值与RNA柔性显著相关。进一步分析发现,与茎结构含量和环结构含量都显著相关的密码子,它们的相对同义密码子使用值与两种结构含量的相关性截然相反,而且发现,在所选的参量中,RNA柔性与相对同义密码子使用值显示出更好的相关性。结果证实,对于A型流感病毒,同义密码子的使用偏性对RNA二级结构存在很大的影响。  相似文献   

4.
随着基因组学和转录组学在不同生物体遗传和细胞生物学领域的广泛应用,同义密码子使用的偏嗜性逐渐被接受,并且在研究生物进化与生物表型之间的深层联系时,同义密码子使用模式受到相关领域研究人员的重视。信使RNA(messenger RNA,mRNA)最终表达出具有正常生物活性的蛋白产物是生命活动的重要环节。被称为“第二遗传密码”的同义密码子使用模式,可以通过精微调控翻译选择压力等分子机制,从转录调控、翻译调控及代谢活动等水平表达其承载的遗传信息。研究表明,mRNA半衰期的长短对mRNA活性以及转录和翻译过程有显著的影响。因此,系统地归纳同义密码子使用模式在基因转录、翻译调控及翻译后修饰等生命活动中所扮演的角色,将有助于全方位审视生物体如何巧妙利用密码子使用模式所产生的遗传效应来精准合成不同种类蛋白质,并以此保障生长或分化的特定基因表达程序顺利执行、维持正常的生命周期。  相似文献   

5.
同义密码子使用模式作为核苷酸与氨基酸的纽带,其多样性介导了核糖体扫描速率,同时扩充了基因的遗传信息存储量。随着新型技术的应用,发现特异性密码子和密码子结合力可调节核糖体扫描速率并影响蛋白质构象。同义密码子使用模式通过多种方式在不同环节影响着核糖体扫描速率,同时还影响着自身mRNA的稳定性。本文简述了密码子使用模式如何在核糖体扫描翻译mRNA的过程中实现对多肽链翻译延伸的调控,为今后生物工程学领域如何优化蛋白高效表达提供可参考的思路与理念。  相似文献   

6.
籼稻品种93-11同义密码子的使用偏性   总被引:13,自引:2,他引:13  
刘庆坡  谭军  薛庆中 《遗传学报》2003,30(4):335-340
利用籼稻品种93-11的全基因组序列及相应的EST数据,对影响同义密码子用法的若干因子进行了详细分析。指出93-11基因的表达水平(mRNA丰度)与3个同义密码子偏性指标CAI、CPP和ENC相关极显著(r=0.227^**,0.145^**和-0.147^**),表明高表达的基因其同义密码子非随机使用的程度越大;基因长度与CAI和CPP极显著负相关(r=-0.413^**和-0.480^**),与ENC极显著正相关(r=0.210^**),暗示较短的基因具有更高的转录活性;编码区G+C含量对其同义密码子偏性的贡献率远高于mRNA丰度和基因长度,G+C含量与CAI、CPP和ENC相关系数分别高达0.877^**,0.832^**和-0.740^**;起始编码区内A、T、C、G4种碱基呈明显的3周期振荡,尤以ATG下游第一个密码子所在的3个位点(+4、+5和+6)偏置最强烈,由此认为在这3个特殊位点有较高的自然选择压存在;93-11中25个最优密码子的首次确定将对水稻转基因具有指导意义。  相似文献   

7.
同义密码子的反常蛋白质二级结构偏好性   总被引:1,自引:0,他引:1  
统计分析了 119种人蛋白质和 92种大肠杆菌蛋白质的mRNA序列和蛋白质二级结构的关系 .从二肽频数出发 ,研究了同义密码子使用对蛋白质二级结构的影响 ,证明其影响在 10 %到 2 0 %的量级 .对于人和大肠杆菌 ,在 90 %置信水平上 ,4 0 0对二肽中分别有 79对和 6 0对 ,在 95 %置信水平上 ,分别有 4 5对和 36对二肽的相应密码子二联体具有不同于氨基酸的反常二级结构偏好性 ,并且这种反常不能归因于随机涨落  相似文献   

8.
9.
插入玉米Ds转座因子的水稻转化群体及其分子分析   总被引:13,自引:1,他引:13  
王江  李琳 《植物生理学报》2000,26(6):501-506
转座子标签法是一种利用转座因子插入高等植物基因组中造成基因突变,然后通过分离转座因子插入的旁邻顺序,进而克隆出突变基因的策略。这种策略在高等植物功能基因组学的研究中是十分有用的,为此目的,将玉米的Ds因子及bar基因连接至载体pCAMBIA1300的T-DNA区域中,构建成重组Ti质粒pDsBar1300。pDaBar1300中T-DNA区域中的潮霉素抗性基因可在转化过程中用作水稻转化植株的选择标  相似文献   

10.
在五十年代前,人们一直认为每一基因组的 DNA是固定的,包括位置固定、数目固定。转座因子的发现修正了这一观念。现在人们认识到基因组中的某些成分的位置常常是不固定的,一种生物的基因组大小或基因的数目也并非绝对不变。这种位置不固定的成分乃是转座因子。转座因子(transpos-able element)是细胞中能够改变自身位置的一段 DNA 序列。转座因子改变位置的行为称转座(transposition),转座可以发生在同一染色体的不同位置之间,不同的  相似文献   

11.
Analysis of synonymous codon usage bias in Chlamydia   总被引:9,自引:0,他引:9  
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content.  相似文献   

12.
Sau K  Gupta SK  Sau S  Mandal SC  Ghosh TC 《Bio Systems》2006,85(2):107-113
Synonymous codon and amino acid usage biases have been investigated in 903 Mimivirus protein-coding genes in order to understand the architecture and evolution of Mimivirus genome. As expected for an AT-rich genome, third codon positions of the synonymous codons of Mimivirus carry mostly A or T bases. It was found that codon usage bias in Mimivirus genes is dictated both by mutational pressure and translational selection. Evidences show that four factors such as mean molecular weight (MMW), hydropathy, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in Mimivirus proteins. Based on our observation, we suggest that genes involved in translation, DNA repair, protein folding, etc., have been laterally transferred to Mimivirus a long ago from living organism and with time these genes acquire the codon usage pattern of other Mimivirus genes under selection pressure.  相似文献   

13.
Current models of codon substitution are formulated at the levels of nucleotide substitution and do not explicitly consider the separate effects of mutation and selection. They are thus incapable of inferring whether mutation or selection is responsible for evolution at silent sites. Here we implement a few population genetics models of codon substitution that explicitly consider mutation bias and natural selection at the DNA level. Selection on codon usage is modeled by introducing codon-fitness parameters, which together with mutation-bias parameters, predict optimal codon frequencies for the gene. The selective pressure may be for translational efficiency and accuracy or for fine-tuning translational kinetics to produce correct protein folding. We apply the models to compare mitochondrial and nuclear genes from several mammalian species. Model assumptions concerning codon usage are found to affect the estimation of sequence distances (such as the synonymous rate d(S), the nonsynonymous rate d(N), and the rate at the 4-fold degenerate sites d(4)), as found in previous studies, but the new models produced very similar estimates to some old ones. We also develop a likelihood ratio test to examine the null hypothesis that codon usage is due to mutation bias alone, not influenced by natural selection. Application of the test to the mammalian data led to rejection of the null hypothesis in most genes, suggesting that natural selection may be a driving force in the evolution of synonymous codon usage in mammals. Estimates of selection coefficients nevertheless suggest that selection on codon usage is weak and most mutations are nearly neutral. The sensitivity of the analysis on the assumed mutation model is discussed.  相似文献   

14.
Background: Oncogenes are the genes that have the potential to induce cancer. The extent and origin of codon usage bias is an important indicator of the forces shaping genome evolution in living organisms. Results: We observed moderate correlations between gene expression as measured by CAI and GC content at any codon site. The findings of our results showed that there is a significant positive correlation (Spearman''s r= 0.45, P<0.01) between GC content at first and second codon position with that of third codon position. Further, striking negative correlation (r = -0.771, P < 0.01) between ENC with the GC3s values of each gene and positive correlation (r=0.644, P<0.01) in between CAI and ENC was also observed. Conclusions: The mutation pressure is the major determining factor in shaping the codon usage pattern of oncogenes rather than natural selection since its effects are present at all codon positions. The results revealed that codon usage bias determines the level of oncogene expression in human. Highly expressed oncogenes had rich GC contents with high degree of codon usage bias.  相似文献   

15.
Patterns of codon usage have been extensively studied among Bacteria and Eukaryotes, but there has been little investigation of species from the third domain of life, the Archaea. Here, we examine the nature of codon usage bias in a methanogenic archaeon, Methanococcus maripaludis. Genome-wide patterns of codon usage are dominated by a strong A + T bias, presumably largely reflecting mutation patterns. Nevertheless, there is variation among genes in the use of a subset of putatively translationally optimal codons, which is strongly correlated with gene expression level. In comparison with Bacteria such as Escherichia coli, the strength of selected codon usage bias in highly expressed genes in M. maripaludis seems surprisingly high given its moderate growth rate. However, the pattern of selected codon usage differs between M. maripaludis and E. coli: in the archaeon, strongly selected codon usage bias is largely restricted to twofold degenerate amino acids (AAs). Weaker bias among the codons for fourfold degenerate AAs is consistent with the small number of tRNA genes in the M. maripaludis genome.  相似文献   

16.
Zhao S  Zhang Q  Liu X  Wang X  Zhang H  Wu Y  Jiang F 《Bio Systems》2008,92(3):207-214
Human Bocavirus (HBoV) is a novel virus which can cause respiratory tract disease in infants or children. In this study, the codon usage bias and the base composition variations in the available 11 complete HBoV genome sequences have been investigated. Although, there is a significant variation in codon usage bias among different HBoV genes, codon usage bias in HBoV is a little slight, which is mainly determined by the base compositions on the third codon position and the effective number of codons (ENC) value. The results of correspondence analysis (COA) and Spearman's rank correlation analysis reveals that the G + C compositional constraint is the main factor that determines the codon usage bias in HBoV and the gene's function also contributes to the codon usage in this virus. Moreover, it was found that the hydrophobicity of each protein and the gene length are also critical in affecting these viruses’ codon usage, although they were less important than that of the mutational bias and the genes’ function. At last, the relative synonymous codon usage (RSCU) of 44 genes from these 11 HBoV isolates is analyzed using a hierarchical cluster method. The result suggests that genes with same function yet from different isolates are classified into the same lineage and it does not depend on geographical location. These conclusions not only can offer an insight into the codon usage patterns and gene classification of HBoV, but also may help in increasing the efficiency of gene delivery/expression systems.  相似文献   

17.
It has been proposed that the synonymous codon usage of human tissue-specific genes was under selective pressure to modulate the expression of proteins by codon-mediated translational control (Plotkin, J. B., H. Robins, and A. J. Levine. 2004. Tissue-specific codon usage and the expression of human genes. Proc. Natl. Acad. Sci. USA 101:12588-12591.) To test this model, we analyzed by internal correspondence analysis the codon usage of 2,126 human tissue-specific genes expressed in 18 different tissues. We confirm that synonymous codon usage differs significantly between the tissues. However, the effect is very weak: the variability of synonymous codon usage between tissues represents only 2.3% of the total codon usage variability. Moreover, this variability is directly linked to isochore-scale (>100 kb) variability of GC-content that affect both coding and introns or intergenic regions. This demonstrates that variations of synonymous codon usage between tissue-specific genes expressed in different tissues are due to regional variations of substitution patterns and not to translational selection.  相似文献   

18.
The teleology of synonymous codon usage (SCU) still awaits a unifying concept. Here the 2nd codon letter of human mRNA-codons was graphically, aided by a computer program, put in relation to the 3rd codon letter, the carrier of SCU: AT2, the density of A+T in 2nd codon position, behaves to AT3, the analogous density of the 3rd codon position, mostly in an inverse fashion that can be expressed as typical figures: mRNAs with an overall AT-density below 50% have a tendency to produce bulky figures called "red dragons" (when redness is attributed to graph-areas, where AT3< AT2), while mRNAs with an AT-density above 50% produce a pattern called "harlequin" consisting of alternating red and blue (blueness, in analogy, when AT3>AT2) diamonds. With more diversion of AT3 from AT2, the harlequin patterns can assume the pattern of a "blue dragon". By analysing the mRNA of known proteins, these patterns can be correlated with certain functional regions: proteins with multiple transmembrane passages show bulky "red dragons", structural proteins with a high glycine- and proline content such as collagen result in "blue dragons". Non-coding mRNAs tend to show a balance between AT2 and AT3 and hence "harlequin patterns". Signal peptides usually code red due to a low AT3 with an AT2-density at the expectance level. With this technique DNA-sequences of as yet unknown functional meaning were scanned. When stretches of harlequin patterns appear interrupted by red or blue dragons, closer scrutiny of these stretches can reveal ORFs which deserve to be looked at more closely for their protein-informational content. At least in humans, SCU appears to follow protein-dependent AT2-density in a reciprocal fashion and does not seem to serve the purpose of influencing mRNA secondary structure which is discussed in depth.  相似文献   

19.
Multivariate analysis of codon and amino acid usage was performed for three Leishmania species, including L. donovani, L. infantum and L. major. It was revealed that all three species are under mutational bias and translational selection. Lower GC 12 and higher GC 3S in all three parasites suggests that the ancestral highly expressed genes (HEGs), compared to lowly expressed genes (LEGs), might have been rich in AT-content. This also suggests that there must have been a faster rate of evolution under GC-bias in LEGs. It was observed from the estimation of synonymous/non-synonymous substitutions in HEGs that the HEG dataset of L. donovani is much closer to L. major evolutionarily. This is also supported by the higher d N value as compared to d S between L. donovani and L. major, suggesting the conservation of synonymous codon positions between these two species and the role of translational selection in shaping the composition of protein-coding genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号