首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We describe patterns of tree community change along a 700-km transect through terra firme forests of western Amazonia, running from the base of the Andes in Ecuador to the Peru–Brazil border. Our primary question is whether floristic variation at large scales arises from many gradual changes or a few abrupt ones. Data from 54 1-ha tree plots along the transect support the latter model, showing two sharp discontinuities in community structure at the genus level. One is located near the Ecuador–Peru border, where the suite of species that dominates large areas of Ecuadorean forest declines abruptly in importance to the east. This discontinuity is underlain by a subterranean paleoarch and congruent with a change in soil texture. A second discontinuity is associated with the shift from clay to white sand soils near Iquitos. We hypothesize that the first discontinuity is part of an edaphic boundary that runs along the Andean piedmont and causes a transition from tree communities preferring richer, younger soils near the base of the Andes to those preferring poorer, older soils farther east. Because the floristic changes observed at this discontinuity are conserved for large distances to the east and west of it, the discontinuity is potentially key for understanding floristic variation in western Amazonia. The significant floristic turnover at the Ecuador–Peru border suggests that the only large protected area in the region—Ecuador's Yasuní National Park—is not adequate protection for the very diverse tree communities that cover vast areas of northern Peru.  相似文献   

2.
The occurrence of tree deaths in young, 3 to 6 year old Eucalyptus globulus plantations established on farmland in south-western Australia was found to be strongly related to factors indicative of poor soil water storage capacity. Seven years after planting tree survival was significantly less on soils <2 m deep compared to >2 m deep (22% vs 70%). This is due to the limited ability of some soils to store a sufficient proportion of the annual rainfall within the root-zone to meet the plant water demand in a region with a recurrent annual summer drought. There are practical difficulties in routinely surveying soils to depths in excess of 2 m over broad areas, to predict the likelihood of tree death. On the granitic basement rocks of south-west Western Australia, the occurrence of ferricrete gravels provides a useful surrogate indicator for the presence of deeper soils. In this region the distribution of soil depth and soil fertility has a geomorphic basis, being related to previous patterns of deep weathering and regolith stripping. Soils have developed on various horizons of deeply weathered profiles, formed from granites and gneisses. These materials have been stripped to a variable extent by erosion, leading to a range of soil depths. The original weathered profiles, which correspond to the soils with ferricrete gravels, comprise the deepest soil/regolith materials (~30-50 m deep); whereas along drainage lines the regolith has been completely stripped, the soils are shallow and plantations are most susceptible to drought. Knowledge of the relationship between soil depth and plantation performance allows regional indications of drought risk to be developed from regional soil mapping and the production of more efficient sampling designs for site assessment.  相似文献   

3.
Soil profiles and rooting morphologies were examined under an ecotone where open woodland of multi-stemmed, small, lignotuberous eucalypts (mallee) graded into proteaceous heath. Soils under the mallee showed a Solonetz-type seal which separated, hydrologically, the upper acidic horizon of bleached sand from lower alkaline horizons rich in calcrete, silcrete, finely divided carbonates and clay. Seal composition appeared to vary consistently with overlying species of mallee. The generally acidic lateritic profiles under heath were rich in pisolithic ferricretes and displayed Fe-coated root channels. Both sets of taxa exhibited dimorphic rooting patterns, with ectomycorrhizal roots and seal-penetrating, second-order tap roots developed on the extensive lateral roots of mallee versus a dominance of primary tap roots and cluster root development on laterals of Proteaceae. Overprinting of ferricrete by clays and silicified material was evident where mallee appeared to have invaded areas of heath. Examination of other contemporary lateral facies changes and vertically-stacked paleosol formations in the study region provided corroborating evidence of similar profile attributes, including presence of Fe- or Si-lined root channels, overprinting phenomena and consistency in occurrences of ferricrete and calcrete as expected of each class of vegetation. Observations were related to the concepts of bioengineering of soil profiles through activity of macroflora and associated micro-organisms as set out more generally in our companion review.  相似文献   

4.
Alterations in soil bacterial communities across a transect between a semi natural upland grassland and an agriculturally improved enclosure were assessed using culture-based methods and a nucleic-acid-based method, terminal restriction fragment length polymorphism (TRFLP). While plant diversity decreased across the transect towards the improved area, numbers of 16S rDNA terminal restriction fragments increased, indicating an increase in numbers of bacterial ribotypes. Bacterial numbers, microbial activity, and potential functional diversity also followed a similar trend, increasing with decreasing plant diversity. Alterations in bacterial community structure were coincident with changes in soil physicochemical properties which also changed across the transect. Increases in soil pH, nitrate, phosphorus, potassium, and calcium occurred toward the improved grassland, while organic matter and ammonium declined. The inverse relationship between floristic diversity and bacterial ribotype numbers suggests that soil physicochemical factors may be as influential in determining bacterial diversity in soils of upland grassland communities as floristic diversity.  相似文献   

5.
6.

Background and aims

Embothrium coccineum (R. et J. Forst.) is a Proteaceae species from the southern part of South America. South-central Chilean soils are younger and contain more phosphorus (P) than soils in Australia and South Africa, where Proteaceae are common. Phosphorus deficiency is the main factor promoting cluster-root formation in Proteaceae. It is not known, however, whether this also applies to E. coccineum, which grows on soils with higher P content.

Methods

Four-month-old seedlings were grown for 4 weeks in hydroponic cultures with 1 μM P or 50 μM P. The number of cluster roots, relative height increment, biomass distribution, cluster root/total root biomass ratio, foliar P concentration, root acid phosphatase activity and root carboxylate-exudation rates were determined.

Results

Seedlings growing at 50 μM P showed a 10?, 1.3? and 3.3-fold greater increase in relative height, total dry mass and foliar P concentration, respectively, compared with those grown at1 μM P. However, seedlings grown at 1 μM P showed a 5?, 16?, 1.7? and 1.3-fold greater number of cluster roots, cluster root/total root biomass ratio, phosphatase activity and total carboxylate exudation, respectively, as compared with those grown at 50 μM P.

Conclusions

A low P supply promotes the initiation, growth and metabolic activity of cluster roots which is in accordance with reports on Proteaceae species occurring in ancient and highly weathered soils.  相似文献   

7.
Ultramafic soils at Bandalup Hill (Western Australia) are characterised by high concentrations of Ni and low levels of P. Amongst the plant species that can sustain such hostile conditions, Hakea verrucosa F. Muell from a non-mycorrhizal family (Proteaceae) would be expected to rely on cluster roots to access P. However, the acidification of ultramafic soils by cluster roots might increase the dissolution of soil Ni, and therefore its availability to plants. Symbiosis with mycorrhizal fungi, on the other hand, might help to reduce the uptake of Ni by H. verrucosa. Therefore, the aim of this study was to investigate the mycorrhizal status of H. verrucosa, and assess any contribution from mycorrhizal fungi to its growth and nutrient status. Seedlings of H. verrucosa were first grown in undisturbed ultramafic soil cores from Bandalup Hill for 8 weeks to assess the presence of mycorrhizal fungi in their roots. In a second experiment, H. verrucosa seedlings were grown in the same ultramafic soil that was either steamed or left untreated. Seedlings were inoculated with an arbuscular mycorrhizal (AM) fungal consortium from Bandalup Hill. Fungal hyphae, vesicles, as well as intracellular arbuscules and hyphal coils were observed in the cluster roots of H. verrucosa in both experiments. In the first experiment, 57% of the root length was colonized by AM fungi. Seedlings had high (between 1.4 and 1.9) shoot to root ratios and their roots had very few root hairs, despite growing in P-deficient soil. Steaming of the ultramafic soil increased the growth of seedlings and their nutrient uptake. Inoculation with AM fungi reduced the seedling growth in steamed ultramafic soil; however, it increased their shoot P and K concentration and also the shoot K content. The shoot Ni concentration of seedlings was not affected by the presence of AM fungi.  相似文献   

8.
Changes in vegetation along a precipitation gradient in Central Argentina were studied. Floristic samples were taken along an east-west transect of about 300 km. Correlation analysis between precipitation and ordination axes was used to provide an environmental interpretation of vegetation variability.Floristic analysis produced an ordination of plant communities from evergreen forests (precipitation >500 mm) to desert shrublands and therophyte communities (precipitation <200 mm). Results showed a trend of floristic and structural impoverishment towards the west. There is a replacement of species along the transect and a shift in dominant growth forms. The first ordination axis is significantly, negatively correlated with annual precipitation.  相似文献   

9.
10.
Bacterial community structure was studied in humus and mineral soils of evergreen broad-leaved forests in Ailaoshan and Xishuangbanna, representing subtropical and tropical ecosystems, respectively, in south-west China using sequence analysis and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Clone sequences affiliated to Acidobacteria were retrieved as the predominant bacterial phylum in both forest soils, followed by those affiliated to members of the Proteobacteria, Planctomycete and Verrucomicrobia. Despite higher floristic richness at the Xishuangbanna forest than at the Ailaoshan forest, soil at Xishuangbanna harbored a distinctly high relative abundance of Acidobacteria-affiliated sequences (80% of the total clones), which led to a lower overall bacterial diversity than at Ailaoshan. Bacterial communities in humus and mineral soils of the two forests appeared to be well differentiated, based on 16S rRNA gene phylogeny, and correlations were found between the bacterial T-RFLP community patterns and the organic carbon and nutrient contents of the soil samples. The data reveal that Acidobacteria dominate soil bacterial communities in the evergreen broad-leaved forests studied here and suggest that bacterial diversity may be influenced by soil carbon and nutrient levels, but is not related to floristic richness along the climatic gradient from subtropical to tropical forests in south-west China.  相似文献   

11.
Spatial heterogeneity in the plant species composition of tropical forests is expected to influence animal species abundance and composition because vegetation constitutes the primary habitat feature for forest animals. Floristic variation is tied to variation in soils, so edaphic properties should ultimately influence animal species composition as well. The study of covariation in floristic and faunistic turnover has been hindered by the difficulty of completing coordinated surveys in hyperdiverse tropical communities, but this can be overcome with the use of a few plant taxa that function as surrogates for general floristic turnover. We used avian and plant transect surveys and soil sampling in a western Amazonian upland (terra firme) forest landscape to test whether spatial variation in bird community composition is associated with floristic turnover and corresponding edaphic gradients. Partial Mantel tests and Non‐metric Multidimensional Scaling showed floristic distinctiveness between two forest types closely associated with differences in soil cation concentrations, and differences in both floristic composition and cation concentrations were further linked to compositional differences in avian species, independent of geographic distances among sites. Ten percent of bird species included in Indicator Species Analyses showed significant associations with one of the two forest types. The upland forest types that we sampled, each corresponding to a different geological formation, are intermediate relative to edaphically extreme environments in the region. Models of avian diversification should take into account this environmental heterogeneity, as should conservation planning approaches that aim to represent faunal diversity. Abstract in Spanish is available in the online version of this article.  相似文献   

12.
Lamont  Byron B. 《Plant and Soil》1993,155(1):269-272
Rootlets, covered in long root hairs, are aggregated into distinct clusters in many groups of Australian plants. They are almost universal in the family Proteaceae, and some members of the Papilionaceae, Mimosaceae, Casuarinaceae, Cyperaceae, Restionaceae and Dasypogonaceae. These families have their centres of distribution in the oldest, most leached sands and laterites of the continent. Root clusters are almost confined to the uppermost 100 mm of the soil profile, often penetrating into the raw litter. These horizons are the major sources of mineral nutrients which are mobilized when these soils become moist. I argue that root clusters are an ideal solution for maximizing nutrient uptake in extremely impoverished soils, especially in seasonal climates.  相似文献   

13.
Tabletop Mountain in the Northern Territory is a sandstone plateau topped in part by a residual laterite soil. The vegetation of the plateau was mapped and transects placed to cover the mapping units in which eucalypts were dominant or shared dominance. A polythetic divisive classification of the transect floristic data was largely congruent with the mapping units, which also differentiated the dominants. Topography and soils have an apparently strong influence on the nature of the vegetation through their influence on the periodicity and intensity of drought and Waterlogging. However, differences in soil fertility and understorey flammability are postulated to be important in discriminating several of the mapped vegetation types. The flora of Tabletop more closely resembles that of the Alligator Rivers region than that of the Mitchell Plateau or Weipa. Some of the communities differentiated at Tabletop are related floristically to some of the communities differentiated in the Alligator Rivers region and at Gove.  相似文献   

14.
Altitudinal zonation of Andean cryptogam communities   总被引:2,自引:0,他引:2  
To test whether cryptogamic plant communities in tropical Andean rain forests are distributed in floristically discrete communities corresponding to altitudinal belts, I subjected the elevational distribution of pteridophytes along two elevational gradients in Bolivia, and of bryophytes and lichens along two transects in Peru and Colombia (data from Gradstein & Frahm, 1987 ; Wolf, 1993 ) to an analysis of deviance. All well‐defined elevational boundaries in floristic composition were related to marked ecological changes: the transition from the steep mountains to the hilly lowland zone coupled with a change in geological substrate at 400 m along the Bolivian Carrasco transect, a strong humidity gradient at 1000 m at the Bolivian Masicurí transect and at 1250–1980 m along the Colombian transect, and the transition from mixed cloud forests to forests dominated by Polylepis or Podocarpus at 3400–3600 m in Carrasco, at 1650–1800 m in Masicurí, and at 3670 m in Colombia. Consequently, floristic elevational belts appear to be well‐defined at strong environmental boundaries and in fairly species‐poor forest communities where the presence or absence of one or a few tree species influences the whole ecosystem while they are ill‐defined in species‐rich communities such as tropical forests at low to mid‐elevations.  相似文献   

15.
Many studies analyzing the relative contribution of soil properties versus distance‐related processes on plant species composition have focused on lowland tropical forests. Very few have investigated two forest types simultaneously, to contrast ecological processes that assemble the communities. This study analyses—at the landscape scale—the relative contribution of soil and distance on lowland and submontane tropical forests, which co‐occur in two reserves of the Azuero peninsula (Panama). Floristic inventories and soil sampling were conducted in 81 0.1‐ha plots clustered in 27 sites, and data were analyzed using Mantel tests, variance partitioning and non‐metric multidimensional scaling. The largest differences in floristic composition occurred between reserves in both forest types. Soil variation and geographic distance were important determinants of floristic composition, but their effects were highly correlated; together they explained 7–25 percent and 46–50 percent of the variation in lowland and submontane forests, respectively. Soil variables that had the best correlations with floristic composition were iron, zinc, and silt content in lowland, and calcium, copper, iron, potassium, magnesium, phosphorus, zinc, and sand content in submontane forests. The studied forests showed a high beta diversity that seems to be related primarily with soils and, secondarily, with dispersal limitation and stochastic events. The results reveal a response of tree assemblages to environmental gradients, which are particularly conspicuous in Panama. The effects of limited dispersal seem to be more important in submontane than in lowland forests, probably as a result of higher isolation.  相似文献   

16.
The species-rich fynbos of the southern Langeberg Mountains, South Africa was studied along three transects (a) to evaluate the compatibility of a floristic classification of the southern Langeberg vegetation with a fynbos biome-wide structural classification of mountain vegetation, (b) to describe the environmental gradients to which the vegetation responds and (c) to investigate the relationship between the vegetation and the abiotic environmental variables which determine the pattern of distribution of the fynbos communities on the southern Langeberg.Principal Components Analysis (PCA) was used to determine correlations between environmental variables independent of vegetation data. Similarities between the 46 communities (determined by floristics) from the three transects were determined using cluster analysis and grouped into 14 higher-level units. Detrended Correspondence Analysis (DCA) was then used for indirect gradient analysis after which Canonical Correspondence Analysis (CCA) was used in a direct gradient analysis of the vegetation with the environmental variables.Compatibility between the floristic and structural classification of the vegetation was analysed. The PCA principal gradient was defined as one from sites with high rock cover, shallow soils and north aspects to those with low rock cover, deeper soils and south aspects. The second gradient is most strongly positively correlated with percentage organic carbon and most strongly negatively correlated with soil clay content. In contrast to the PCA, the DCA showed that the principal gradient is a precipitation gradient, with the response of the vegetation dominated by the change from wet to dry conditions and from low to high winter incoming radiation. The CCA showed that the variation in the mountain habitats to which the vegetation responds can be predicted from a combination of a few environmental variables. The principal gradient was one of change from high to low mean annual precipitation with an opposite change in winter incoming radiation. The second gradient was described by percentage surface rock cover and soil clay content. A simple model using the environmental factors selected in the CCA was proposed for predicting the distribution of floristically determined community groups in the fynbos vegetation of the Langeberg and the southern Cape coastal mountains in general.  相似文献   

17.
沙地云杉幼苗根表土体中NPK的梯度分布   总被引:2,自引:0,他引:2  
采用水平根和垂直根两种处理方法对6年生沙地云杉幼苗进行栽培实验,应用分层取样方法对幼苗根表不同距离土体进行取样,并测定不同层次土体中速效N、速效P、速效K的含量。结果表明,在沙地云杉根表不同距离的土体中,速效N、P、K呈现有规律的梯度分布,即在根表近距离土体中营养元素由于根系的吸附作用而含量较高,同时根系生命活动对营养元素的大量消耗又使得营养元素随即出现严重的亏缺区,再向外延伸营养元素含量又逐渐上升而达到土壤本底值,在水平根处理中,由于沙地云杉对N、P、K吸收和利用的强度不同,亏缺区出现的位置不同,速效N和速效K的亏缺区出现在距离根表1cm处;速效P出现在距离根表0.5cm处,在垂直根处理中,速效N、速效P、速效K的梯度变化与水平根处理的相似速效N和速效K亏缺区出现在距离根表大约1cm处,而速效P在根表附近土壤中的含量始终少于根表远处,说明沙地云杉幼苗对速效P的吸收和利用强度大,速效P可能成为沙地云杉生长发育的限制因子。因此,在沙地云杉引种栽培时,应该选择含P丰富的土壤,或者对林地适当施用一些P肥。  相似文献   

18.
White lupin (Lupinus albus L. cv. Amiga) reacts to phosphate deficiency by producing cluster roots which exude large amounts of organic acids. The detailed knowledge of the excretion physiology of the different root parts makes it a good model plant to study plant-bacteria interaction. Since the effect of the organic acid exudation by cluster roots on the rhizosphere microflora is still poorly understood, we investigated the abundance, diversity and functions of bacteria associated with the cluster roots of white lupin, with special emphasis on the influence of root proximity (comparing root, rhizosphere soil and bulk soil fractions) and cluster root growth stages, which are characterized by different excretion activities. Plants were grown for five weeks in microcosms, in the presence of low phosphate concentrations, on acidic sand inoculated with a soil suspension from a lupin field. Plate counts showed that bacterial abundance decreased at the stage where the cluster root excretes high amounts of citrate and protons. In vitro tests on isolates showed that the frequencies of auxin producers were highest in juvenile and mature cluster roots and significantly decreased in senescent cluster roots. However, no significant difference in the frequency of auxin producers was found between cluster and non cluster roots. The diversity and structure of bacterial communities were investigated by DGGE of 16S rDNA and 16S rRNA. The diversity and community structure were mostly influenced by root proximity and, to a lesser extent, by cluster root stage. The richness of bacterial communities decreased with root proximity, whereas the proportion of active populations increased. The high citrate and proton excretion occurring at the mature stage of cluster roots had a strong impact on the structure and richness of the bacterial communities, both in the root and in the rhizosphere soil.  相似文献   

19.
Abstract We propose a rapid sampling method to assess the functional composition of herbaceous plant communities without prior knowledge of the floristic composition. To determine the community‐level value of traits (‘aggregated trait values’) for a plant community, a standardized population‐centred method exists, but requires substantial manpower and reliable botanical knowledge. We tested an alternative method, the trait transect, using four subalpine pastures in the Beaufortain region (Northern French Alps) selected along a fertility gradient. We applied both methods to measure five commonly used ‘soft traits’ known to be responsive to soil nutrient availability: plant vegetative and reproductive height, specific leaf area, leaf dry matter and nitrogen contents. We tested whether the variation of these traits along the gradient detected with the population‐centred method was also detected with the trait transect. Both methods detected expected trends in the traits in response to the fertility gradient. The trait transect method was as efficient as the population‐centred method and is recommended as an appropriate tool for monitoring ecosystem changes in response to environmental conditions and management, especially in species‐rich communities.  相似文献   

20.
Hawkins HJ  Wolf G  Stock WD 《Annals of botany》2005,96(7):1275-1282
BACKGROUND AND AIMS: South African soils are not only low in phosphorus (P) but most nitrogen (N) is in organic form, and soil amino acid concentrations can reach 2.6 g kg(-1) soil. The Proteaceae (a main component of the South African Fynbos vegetation) and some Fabaceae produce cluster roots in response to low soil phosphorus. The ability of these roots to acquire the amino acid glycine (Gly) was assessed. METHODS: Uptake of organic N as 13C-15N-Gly was determined in cluster roots and non-cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) in hydroponic culture, taking account of respiratory loss of 13CO2. KEY RESULTS: Both plant species acquired doubly labelled (intact) Gly, and respiratory losses of 13CO2 were small. Lupin (but not leucadendron) acquired more intact Gly when cluster roots were supplied with 13C-15N-Gly than when non-cluster roots were supplied. After treatment with labelled Gly (13C : 15N ratio = 1), lupin cluster roots had a 13C : 15N ratio of about 0.85 compared with 0.59 in labelled non-cluster roots. Rates of uptake of label from Gly did not differ between cluster and non-cluster roots of either species. The ratio of C : N and 13C : 15N in the plant increased in the order: labelled roots < rest of the root < shoot in both species, owing to an increasing proportion of 13C translocation. CONCLUSIONS: Cluster roots of lupin specifically acquired more intact Gly than non-cluster roots, whereas Gly uptake by the cluster and non-cluster roots of leucadendron was comparable. The uptake capacities of cluster roots are discussed in relation to spatial and morphological characteristics in the natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号