首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Botrytis cinerea is a model plant‐pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)‐glucose, the major fungal wall nucleotide sugar precursor, to UDP‐rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose‐containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP‐rhamnose pathway intermediate UDP‐4‐keto‐6‐deoxy‐glucose (UDP‐KDG) in hyphae of the Δbcer strain. UDP‐KDG could not be detected in hyphae of the wild‐type strain, indicating fast conversion to UDP‐rhamnose by the BcEr enzyme. The correlation between high UDP‐KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP‐KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP‐KDG may lead to the development of new antifungal drugs.  相似文献   

2.
The type VI protein secretion system (T6SS) is essential for the virulence of several Gram‐negative bacteria. In this study, we identified a T6SS gene cluster in Acidovorax citrulli, a plant‐pathogenic bacterium that causes bacterial fruit blotch (BFB) of cucurbits. One T6SS cluster, of approximately 25 kb in length and comprising 17 genes, was found in the A. citrulli AAC00‐1 genome. Seventeen A. citrulli mutants were generated, each with a deletion of a single T6SS core gene. There were significant differences in BFB seed‐to‐seedling transmission between wild‐type A. citrulli strain, xjl12, and ΔvasD, ΔimpK, ΔimpJ and ΔimpF mutants (71.71%, 9.83%, 8.41%, 7.15% and 5.99% BFB disease index, respectively). In addition, we observed that these four mutants were reduced in melon seed colonization and biofilm formation; however, they were not affected in virulence when infiltrated into melon seedling tissues. There were no significant differences in BFB seed‐to‐seedling transmission, melon tissue colonization and biofilm formation between xjl12 and the other 13 T6SS mutants. Overall, our results indicate that T6SS plays a role in seed‐to‐seedling transmission of BFB on melon.  相似文献   

3.
4.
Most bacteria of the genus Streptococcus are opportunistic pathogens, and some of them produce extracellular DNases, which may be important for virulence. Genome analyses of Streptococcus agalactiae (GBS) neonate isolate NEM316 revealed the presence of seven genes putatively encoding secreted DNases, although their functions, if any, are unknown. In this study, we observed that respiration growth of GBS led to the extracellular accumulation of a putative nuclease, identified as being encoded by the gbs0661 gene. When overproduced in Lactococcus lactis, the protein was found to be a divalent cation‐requiring, pH‐stable and heat‐stable nuclease that we named Nuclease A (NucA). Substitution of the histidine148 by alanine reduced nuclease activity of the GBS wild‐type strain, indicating that NucA is the major nuclease ex vivo. We determined that GBS is able to degrade the DNA matrix comprising the neutrophil extracellular trap (NET). The nucAH148A mutant was impaired for this function, implicating NucA in the virulence of GBS. In vivo infection studies confirmed that NucA is required for full infection, as the mutant strain allowed increased bacterial clearance from lung tissue and decreased mortality in infected mice. These results show that NucA is involved in NET escape and is needed for full virulence.  相似文献   

5.
6.
Wild and cultivated plants represent very different habitats for pathogens, especially when cultivated plants bear qualitative resistance genes. Here, we investigated to what extent the population genetic structure of a plant pathogenic fungus collected on its wild host can be impacted by the deployment of resistant cultivars. We studied one of the main poplar diseases, poplar rust, caused by the fungus Melampsora larici‐populina. A thousand and fifty individuals sampled from several locations in France were phenotyped for their virulence profile (ability to infect or not the most deployed resistant cultivar ‘Beaupré’), and a subset of these was genotyped using 25 microsatellite markers. Bayesian assignment tests on genetic data clustered the 476 genotyped individuals into three genetic groups. Group 1 gathered most virulent individuals and displayed evidence for selection and drastic demographic changes resulting from breakdown of the poplar cultivar ‘Beaupré’. Group 2 comprised individuals corresponding to ancestral populations of M. larici‐populina naturally occurring in the native range. Group 3 displayed the hallmarks of strict asexual reproduction, which has never previously been demonstrated in this species. We discuss how poplar cultivation has influenced the spatial and genetic structure of this plant pathogenic fungus, and has led to the spread of virulence alleles (gene swamping) in M. larici‐populina populations evolving on the wild host.  相似文献   

7.
8.
9.
10.
11.
12.
The global epidemic features of enteric fever have changed greatly in recent years. The incidence of enteric fever caused by Salmonella enterica serovar Paratyphi A has progressively increased. In some areas of Asia, infections with S. Paratyphi A have exceeded those with S. Typhi, resulting in S. Paratyphi A becoming the main causative agent of enteric fever. However, two currently licensed typhoid vaccines do not confer adequate cross‐protection against S. Paratyphi A infection. Therefore, development of specific vaccines against enteric fever caused by S. Paratyphi A is urgently needed. In the present study, an attenuated strain was constructed by double deletion of the htrA and yncD genes in a wild‐type strain of S. Paratyphi A and its safety and immunogenicity assessed. In a mouse model, the 50% lethal dose of the double deletion mutant and the wild‐type strain were 3.0 × 108 CFU and 1.9 × 103 CFU, respectively, suggesting that the double deletion resulted in remarkably decreased bacterial virulence. Bacterial colonization of the double deletion mutant in the livers and spleens of infected mice was strikingly less than that of the wild‐type strain. A single nasal administration of the attenuated vaccine candidate elicited high concentrations of anti‐LPS and anti‐flagellin IgG in a mouse model and protected immunized mice against lethal challenge with the wild‐type strain. Thus, our findings suggest that the attenuated vaccine strain is a promising candidate worthy of further evaluation both as a human enteric fever vaccine and as a vaccine delivery vector for heterologous antigens.  相似文献   

13.
The fungus Alternaria alternata is a common spot‐producing plant pathogen. During the past decade, tobacco brown spot disease caused by this fungus has became prevalent in China and lead to significant losses. To better understand the molecular pathogenesis of this fungus, the aapk1 gene encoding a cAMP‐dependent protein kinase catalytic subunit was cloned, sequenced and characterized. The aapk1 deletion mutants were identified from hygromycin‐resistant transformants by PCR strategy and confirmed by Southern blot analysis and RT‐PCR. The aapk1 deletion mutant exhibited reduced vegetative growth and was less toxic than the wild‐type strain sd1. Deletion of aapk1 also delayed disease development on detached tobacco leaves. Thus, we propose that the cAMP signalling pathway is involved in mycelia growth and pathogenic phenotype of Alternaria alternata.  相似文献   

14.
The biotrophic maize head smut fungus Sporisorium reilianum is a close relative of the tumour-inducing maize smut fungus Ustilago maydis with a distinct disease aetiology. Maize infection with S. reilianum occurs at the seedling stage, but spores first form in inflorescences after a long endophytic growth phase. To identify S. reilianum-specific virulence effectors, we defined two gene sets by genome comparison with U. maydis and with the barley smut fungus Ustilago hordei. We tested virulence function by individual and cluster deletion analysis of 66 genes and by using a sensitive assay for virulence evaluation that considers both disease incidence (number of plants with a particular symptom) and disease severity (number and strength of symptoms displayed on any individual plant). Multiple deletion strains of S. reilianum lacking genes of either of the two sets (sr10057, sr10059, sr10079, sr10703, sr11815, sr14797 and clusters uni5-1, uni6-1, A1A2, A1, A2) were affected in virulence on the maize cultivar ‘Gaspe Flint’, but each of the individual gene deletions had only a modest impact on virulence. This indicates that the virulence of S. reilianum is determined by a complex repertoire of different effectors which each contribute incrementally to the aggressiveness of the pathogen.  相似文献   

15.
Genes required for fungal secondary metabolite production are usually clustered, co‐regulated and expressed in stationary growth phase. Chromatin modification has an important role in co‐regulation of secondary metabolite genes. The virulence factor dothistromin, a relative of aflatoxin, provided a unique opportunity to study chromatin level regulation in a highly fragmented gene cluster that is switched on during early exponential growth phase. We analysed three histone modification marks by ChIP‐qPCR and gene deletion in the pine pathogen Dothistroma septosporum to determine their effects on dothistromin gene expression across a time course and at different loci of the dispersed gene cluster. Changes in gene expression and dothistromin production were associated with changes in histone marks, with higher acetylation (H3K9ac) and lower methylation (H3K9me3, H3K27me3) during early exponential phase at the onset of dothistromin production. But while H3K27me3 directly influenced dothistromin genes dispersed across chromosome 12, effects of H3K9 acetylation and methylation were orchestrated mainly through a centrally located pathway regulator gene DsAflR. These results revealed that secondary metabolite production can be controlled at the chromatin‐level despite the genes being dispersed. They also suggest that patterns of chromatin modification are important in adaptation of a virulence factor for a specific role in planta.  相似文献   

16.
17.
Pectobacterium carotovorum ssp. brasiliense 1692 (Pcb1692) is an important emerging pathogen of potatoes causing blackleg in the field and soft rot during post‐harvest storage. Blackleg diseases involve the bacterial colonization of vascular tissue and the formation of aggregates, also known as biofilms. To understand the role of quorum sensing in vascular colonization by Pcb1692, we generated a Pcb1692ΔexpI mutant strain. Inactivation of expI led to the reduced production of plant cell wall‐degrading enzymes (PCWDEs), the inability to produce acyl homoserine lactone (AHL) and reduced virulence in potato tubers and stems. Complementation of the mutant strain with the wild‐type expI gene in trans successfully restored AHL and PCWDE production as well as virulence. Transmission electron microscopy and in vitro motility assays demonstrated hyperpiliation and loss of flagella and swimming motility in the mutant strain compared with the wild‐type Pcb1692. Furthermore, we noted that, in the early stages of infection, Pcb1692 wild‐type cells had intact flagella which were shed at the later stages of infection. Confocal laser microscopy of PcbΔexpI‐inoculated plants showed that the mutant strain tended to aggregate in intercellular spaces, but was unable to transit to xylem tissue. On the contrary, the wild‐type strain was often observed forming aggregates within xylem tissue of potato stems. Gene expression analyses confirmed that flagella are part of the quorum sensing regulon, whereas fimbriae and pili appear to be negatively regulated by quorum sensing. The relative expression levels of other important putative virulence genes, such as those encoding different groups of PCWDEs, were down‐regulated in the mutant compared with the wild‐type strain.  相似文献   

18.
Vacuole proteases have important functions in different physiological processes in fungi. Taking this aspect into consideration, and as a continuation of our studies on the analysis of the proteolytic system of Ustilago maydis, a phytopathogenic member of the Basidiomycota, we have analysed the role of the pep4 gene encoding the vacuolar acid proteinase PrA in the pathogenesis and morphogenesis of the fungus. After confirmation of the location of the protease in the vacuole using fluorescent probes, we obtained deletion mutants of the gene in sexually compatible strains of U. maydis (FB1 and FB2), and analysed their phenotypes. It was observed that the yeast to mycelium dimorphic transition induced by a pH change in the medium, or the use of a fatty acid as sole carbon source, was severely reduced in Δpep4 mutants. In addition, the virulence of the mutants in maize seedlings was reduced, as revealed by the lower proportion of plants infected and the reduction in size of the tumours induced by the pathogen, when compared with wild‐type strains. All of these phenotypic alterations were reversed by complementation of the mutant strains with the wild‐type gene. These results provide evidence of the importance of the pep4 gene for the morphogenesis and virulence of U. maydis.  相似文献   

19.
In this work, we have characterized the C‐19+ gene cluster (MSMEG_2851 to MSMEG_2901) of Mycobacterium smegmatis. By in silico analysis, we have identified the genes encoding enzymes involved in the modification of the A/B steroid rings during the catabolism of C‐19 steroids in certain M. smegmatis mutants mapped in the PadR‐like regulator (MSMEG_2868), that constitutively express the C‐19+ gene cluster. By using gene complementation assays, resting‐cell biotransformations and deletion mutants, we have characterized the most critical genes of the cluster, that is, kstD2, kstD3, kshA2, kshB2, hsaA2, hsaC2 and hsaD2. These results have allowed us to propose a new catabolic route named C‐19+ pathway for the mineralization of C‐19 steroids in M. smegmatis. Our data suggest that the deletion of the C‐19+ gene cluster may be useful to engineer more robust and efficient M. smegmatis strains to produce C‐19 steroids from sterols. Moreover, the new KshA2, KshB2, KstD2 and KstD3 isoenzymes may be useful to design new microbial cell factories for the 9α‐hydroxylation and/or Δ1‐dehydrogenation of 3‐ketosteroids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号