首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The greatest constraint to potato production in the United Kingdom (UK) is damage by the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. Management of PCN depends heavily on nematicides, which are costly. Of all the inputs in UK agriculture, nematicides offer the largest potential cost savings from spatially variable application, and these savings would be accompanied by environmental benefits. We mapped PCN infestations in potato fields and monitored the changes in population density and distribution that occurred when susceptible potato crops were grown. The inverse relationship between population density before planting and multiplication rate of PCN makes it difficult to devise reliable spatial nematicide application procedures, especially when the pre-planting population density is just less than the detection threshold. Also, the spatial dependence found suggests that the coarse sampling grids used commercially are likely to produce misleading distribution maps.  相似文献   

2.
Potato cyst nematodes in England and Wales - occurrence and distribution   总被引:2,自引:0,他引:2  
Potato cyst nematodes (PCN) have been known to occur in the UK for nearly a hundred years. They are the most problematic pests of potatoes and can cause severe yield losses. Previous work has shown the two species, Globodera rostochiensis and G pallida, to be distributed throughout the UK. This paper reports the results of the first structured and statistically unbiased survey undertaken to assess their occurrence and distribution in the potato growing land of England and Wales. The survey showed that PCN were present in 64% of sites sampled. Of the populations found, 67% were G pallida, 8% were G rostochiensis and 25% contained both species. The results show an increase in the incidence of PCN since previous studies were completed and confirm the perceived shift towards G pallida as the predominant species. Of the infestations found, 62% had a population density of less than 10 eggs g?1 soil.  相似文献   

3.
Laboratory, pot and field experiments investigated the effects of the fungus Zygorrhynchus moelleri on the growth of potato and on the reproduction of the potato cyst nematodes (PCN), Globodera pallida and G rostochiensis. Preliminary laboratory tests showed that Z. moelleri growth was favoured by temperatures and pH ranges commonly present in field soils. The fungus colonised potato roots in vitro and in compost or field soil. It also stimulated in vitro root growth of three potato cultivars. In pot experiments Z. moelleri stimulated potato growth, particularly in the presence of PCN attack. In field plots infested with a mixture of G pallida and G. rostochiensis, tuber yields were not increased after application of the fungus but, in G pallida‐infested plots, yields were significantly increased after drills were inoculated with Z. moelleri. The application of Z. moelleri had no apparent effects on nematode reproduction. Factors influencing the interactions between Z. moelleri, potato and potato cyst nematodes are discussed and the potential role of the fungus as a plant growth promoter in organic potato production considered.  相似文献   

4.
Inoculation of microplants of potato cv. Golden Wonder with Vaminoc, a mycorrhizal inoculum of three arbuscular mycorrhizal fungi (Glomus spp.), resulted in an increase in in‐sand hatch of Globodera pallida, but not G. rostochiensis, within 2 weeks. By this time, mycorrhized plants also supported a larger number of feeding nematodes of both PCN species (50% higher for G. rostochiensis) than did non‐mycorrhized plants, with a higher proportion of the G. pallida population being fertilised females than for G. rostochiensis. After 12 weeks, the multiplication rate of G. rostochiensis on mycorrhized plants was significantly greater than on non‐mycorrhized plants, whereas no such difference was observed for G. pallida. The principal component of PCN multiplication affected by mycorrhization was increased cyst number per plant from 6 to 12 weeks. Over this period, there was no increase in cyst number per plant for either PCN species on non‐mycorrhized plants, whereas the value increased on mycorrhized plants for both G. rostochiensis (by almost 200%) and G. pallida (57%). Mycorrhization resulted in significant increases in the root and shoot dry weights of plants grown in the absence of PCN. Although mycorrhized plants carried a larger PCN burden than non‐mycorrhized plants when grown on PCN‐infested medium, as a result of the increased PCN multiplication rate, they produced larger root systems than did nonmycorrhized plants, suggesting increased tolerance to PCN of the mycorrhized plants, particularly to G. rostochiensis. Of morphological characters investigated in the absence of PCN, only stem height (increased) was significantly affected by mycorrhization. Colonisation by mycorrhizal fungi resulted in increased tuber yield both in the absence (significant increase) and presence (non significant) of PCN, as a result of increased tuber number per plant. These results are discussed in the light of the possible use of AMF as part of an integrated PCN management plan.  相似文献   

5.
Six potato cultivars with different levels of resistance to the white potato cyst nematode (PCN) Globodera pallida Pa2 were grown for three seasons in field plots to which G. pallida Pa2 cysts had been introduced earlier. There were two planting times, corresponding to early and maincrop commercial planting times, and two initial PCN population densities, high and low. The effect of cultivar on PCN population density was far greater than the effect of planting time or initial nematode population. The final PCN populations for the cultivars Ilam Hardy, Wha, 4696A(2), Sovereign, D40/6 and V390 were 151, 74, 27, 1.4, 0.2 and 0.06 eggs per g of soil respectively. It is concluded that resistant potato cultivars can be very effective in controlling G. pallida Pa2 in the field.  相似文献   

6.
In 1997 and 1998 the stimulation of hatch of potato cyst nematodes (PCN) by a trap crop was studied at various times during the growing season in a container and a field experiment. Solanum nigrum‘90‐4750‐188’was used as the trap crop in both experiments and was sown on 1 May, 16 June or 1 August in two successive years on different plots. Neither experiment revealed much seasonal variation in hatchability of PCN juveniles under a trap crop. In the container experiment, the hatch of the Globodera pallida Pa3 population was equally and strongly stimulated (89%) at all sowing dates in both years, except for the 1 August sowing in 1998 (when the hatch was 77% under extremely wet soil conditions). In the control treatment with non‐hosts (flax followed by barley) the total spontaneous hatch was 50% over 2 yr. In the field experiment, the hatch of PCN, averaged over the four populations, was also equally stimulated (71%) at all sowing dates in both years. In the control treatment with non‐hosts (flax‐barley) the total spontaneous hatch was 36% over 2 yr. Total hatch under the trap crop over 2 yr varied between the four PCN populations from 63% to 80%. In 1998 and 1999, control of potato cyst nematodes (PCN) by the potential trap crops Solanum sisymbriifolium and S. nigrum‘90‐4750‐188’was studied in the field. Potato was also included as a trap crop. In the 1998 experiment, potato, S. sisymbriifolium and S. nigrum strongly stimulated the hatch of PCN compared with the non‐host white mustard (Sinapis alba). Roots of potato and white mustard were mainly found in the top 10 cm of soil, whereas roots of S. sisymbriifolium and S. nigrum were also abundant at depths of 10–20 cm and 20–30 cm. In the 1999 experiment, soil infestation with PCN decreased markedly with potato and S. sisymbriifolium as trap crops. In plots moderately to severely infested with 2‐yr old cysts (2–29 juveniles ml?1 air dried soil), potato reduced soil infestation by 87% and S. sisymbriifolium by 77%. In plots moderately to severely infested with 1‐yr old cysts the reductions were 74% and 60%, respectively. The reduction was least on plots very severely infested with PCN (110–242 juveniles ml?1 soil): 69% and 52% for potato and S. sisymbriifolium, respectively. Soil infestations of plots that were initially slightly to severely infested with the root‐knot nematode Meloidogyne hapla were greatly reduced under fallow and S. sisymbriifolium but increased under potato. From these and previous experiments it was concluded that, for several reasons, S. sisymbriifolium is a promising trap crop.  相似文献   

7.
The concept of using a range of Solanaceae potato clones as trap crops for potato cyst nematode (PCN) management was investigated. A series of field trials were undertaken from 1999 to 2002 that evaluated 10 clones of either wild Solanum potato species, breeder’s hybrid lines or commercial cultivars. All had high resistance to all known PCN pathotypes (both Globodera rostochiensis and Globodera pallida) and the ability to stimulate high levels of PCN hatch. Investigations showed potential for the development of some clones as a means of reducing high PCN field population levels and for use by organic potato producers.  相似文献   

8.
The two species of the potato cyst nematodes (PCN) Globodera pallida and G rostochiensis are the most problematic pests of the potato crop in the UK. There are no commercially available cultivars with full resistance to G. pallida and both crop rotation and granular nematicides are less effective at controlling this species than G. rostochiensis. In situations of very high PCN levels it may be possible to reduce populations and yield losses by using an autumn application of the soil fumigant 1,3-dichloropropene (1,3-D) followed by a spring application of a granular nematicide. Two field experiments were done to look at the integration of methods for the control of PCN. The Common Field experiment (G. rostochiensis infested) compared the use of 1,3-D with the granular nematicides aldicarb, oxamyl and fosthiazate when growing the susceptible cv. Estima. The Four Gates experiment (infested with both PCN species but mainly G rostochiensis) compared the performance of cv. Santé (partially resistant to G. pallida, fully resistant to G. rostochiensis) with that of the susceptible cv. Estima when treated with 1,3-D and oxamyl at full and half-rates. The results of the experiments show that an integrated approach to nematode control on heavily infested sites, including granular and fumigant nematicides and cultivar resistance, can lead to significant decreases in nematode population densities and reduce yield losses. An economic evaluation of the experiments modelled the gross margins from the different nematicide treatments. In Common Field, the highest gross margins were achieved with the combined use of fumigant and granular nematicides. In Four Gates, there was a clear economic benefit for both cultivars from the use of 1,3-D. In this experiment, oxamyl was of economic value to Estima but not to Sante and full-rate oxamyl was of more benefit than half-rate to Estima.  相似文献   

9.
 Broad-spectrum resistance in potato to the potato cyst nematode (PCN) species Globodera rostochiensis and G. pallida is commonly regarded as a polygenically inherited trait. Yet, by use of QTL analysis and a selected set of PCN populations, resistance to both PCN species could be ascribed to the action of locus Grp1. Grp1 confers major resistance to G. rostochiensis line Ro5-22 and G. pallida population Pa2-D383 and partial resistance to G. pallida population Pa3-Rookmaker. Grp1 was mapped on chromosome 5 using previously characterized AFLP markers. Cleaved amplified polymorphic sequence (CAPS) markers available for RFLP loci GP21 and GP179 revealed that Grp1 maps on a genomic region harboring other resistance factors to viral, fungal and nematodal pathogens. The present data indicate that Grp1 is a compound locus which contains multiple genes involved in PCN resistance. Received: 10 September 1997 / Accepted: 6 October 1997  相似文献   

10.
The geographical structure of mitochondrial (mt)DNA variants (mitotypes) was investigated in 38 western European populations of Scots pine Pinus sylvestris using restriction fragment length polymorphism (RFLP) analysis of total DNA and a homologous cox1 probe. Three major mitotypes (designated a, b and d ) were detected. Within Spain all three major mitotypes were found, gene diversity was high, HT = 0.586, and this diversity was distributed predominantly among rather than within populations (FST(M) = 0.813 for the seven Spanish populations). Mitotype d was present only in the most southerly population from the Sierra Nevada . Elsewhere in Europe, populations showed little or no mtDNA diversity within regions, but there were marked differences between regions. Italian populations were fixed for mitotype b ; populations from northern France, Germany, Poland, Russia and southern Sweden were fixed for mitotype a ; while populations in northern Fennoscandia were fixed for mitotype b . The isolated Scottish populations were predominantly of mitotype a , but mitotype b was present in three of the 20 populations scored. In Scotland, UK gene diversity (HT = 0.120) and genetic differentiation among populations (FST(M) = 0.37) was much lower than in Spain. When interpreted in the light of complementary data from pollen analysis and nuclear genetic markers, the results suggest that present-day populations of P. sylvestris in western Europe have been derived from at least three different sources after glaciation.  相似文献   

11.
Six potato trials, two in each of three years, were conducted in collaboration with the Agricultural Development and Advisory Service (ADAS) at sites infested with potato cyst nematodes (G. pallida Pa 2/3). The trials were part of a selective screen to identify PCN tolerant and intolerant clones with each trial consisting of four blocks divided into nematicide treated and untreated sub-blocks. A range of partially resistant and susceptible material was assessed for yield losses due to PCN damage to the roots and for the effect on the foliage by comparison between the nematicide treated and untreated areas. The relationships between the foliage symptoms, untreated yields, treated yields, proportional yield loss, initial PCN population and the post-harvest PCN population levels are examined. Significant correlation coefficients were obtained between foliage symptoms and yield of clones in PCN infected soil and also between foliage symptoms with percentage yield loss due to PCN infestation. The conclusions were that the assessment of PCN damage to foliage vigour/development can contribute positively to a more accurate identification of tolerant or intolerant potato genotypes.  相似文献   

12.
A field experiment in which main‐crop potatoes were grown every other year was conducted on a sandy soil from 1994 to 1999. The aim of the experiment was to control soil‐borne pathogens of potato with ecologically sound methods. Potato grown as a trap crop from the end of April to the end of June (8 wk) was used to control potato cyst nematodes (PCN) (Globodera pallida), and its effects on other important soil pathogens and on the growth of a subsequent potato crop were also assessed. Additional experimental treatments were a potato crop from which the haulm was removed and a green manure crop. Three potato cultivars with different degrees of resistance to PCN were grown as the main crop. Duplicate sets of the experiment were run concurrently. The PCN were effectively controlled by the potato trap crop. When a highly resistant potato cultivar was grown as a main crop after the trap crop, the post‐harvest soil infestation was very low. When a moderately resistant cultivar was grown after the trap crop the soil infestation also remained low. When the trap crop was alternated with a susceptible potato cultivar as a main crop, soil infestation increased slightly, but the degree of control when compared with no trap crop averaged 96%. Soil infestation with root‐knot nematodes (mainly Meloidogyne hapla) increased when potato was grown as a trap crop, but soil infestation with the root‐lesion nematode Pratylenchus crenatus was not affected. Stem canker caused by Rhizoctonia solani was not affected by the trap crop but black scurf (sclerotia of R. solani) on tubers was reduced. Soil infestation with Verticillium dahliae declined in one of the duplicate sets of the experiment but not in the other. However, stem infections by V. dahliae were significantly decreased in both sets, although the effect depended on the PCN‐resistance level of the potato cultivar. When a highly resistant potato cultivar was grown Verticillium stem infections were not significantly affected, they were decreased with a moderately resistant cultivar but the decrease was most pronounced with a PCN‐susceptible cultivar. Senescence of a following potato crop was not influenced by the trap crop when a highly PCN‐resistant cultivar was grown, but it was delayed in the case of a moderately resistant or a susceptible cultivar, resulting in higher tuber yields for those cultivars. The experiment proved that a trap crop can be an alternative to chemical soil disinfection but, for several reasons, the potato itself is not an ideal crop for this purpose; a trap crop other than potato must be developed.  相似文献   

13.
The effect of a pre-planting application of oxamyl on the yields of six potato cultivars was studied in co-operative field trials in 1981. Two sites were ‘uninfested’ with potato cyst nematodes (PCN), two were lightly infested (<25 eggs/g soil) and six were moderately to heavily infested (three with Globodera rostochiensis and three with G. pallida). At the uninfested and lightly infested sites oxamyl had little effect on mid-season haulm weights or on final tuber yields. At sites moderately to heavily infested with G. rostochiensis the haulm growth of all cultivars tended to be increased by a similar amount on plots treated with oxamyl, Pentland Dell being least responsive. Yield was increased by different amounts, the increases being least for cvs Cara and Maris Piper and most for Corsair and Pentland Dell. At the sites moderately to heavily infested with G. pallida Cara was again tolerant, its yield being increased little by oxamyl compared with the other cultivars. Maris Piper gave the largest yield increase. Final populations of PCN on non-resistant cultivars were reduced by oxamyl at some sites but not at others. Resistant cultivars also decreased the final numbers of PCN at most sites. Two cultivars derived from Solanum vernei with different degrees of resistance, appeared to be almost equally effective in controlling G. rostochiensis and G. pallida.  相似文献   

14.
Solanum sisymbriifolium is a trap crop for potato cyst nematodes (PCN). In this study, we quantified the effect of different periods of growth of S. sisymbriifolium and root length density on hatching of Globodera pallida, using potato and fallow treatments as references. One‐year‐old and 2‐year‐old G. pallida cysts were used in greenhouse experiments carried out in containers over 2 years. Two methods were used in study hatching. In the first method, 7.5‐cm‐diameter soil cores were removed and backfilled with infested soil. In the second method, cysts were buried in nylon bags. The soil cores infested with cysts used in the first method had very poor root colonisation as compared to surrounding bulk soil. Therefore, the effect of S. sisymbriifolium was strongly underestimated by the soil core method. Hatching of PCN juveniles from cysts, measured with the nylon bag method, increased with the duration of growth of S. sisymbriifolium from 47% after 6 weeks of crop growth up to 75% after 21 weeks of crop growth. Reductions per depth layer were also correlated with root length density and varied between 42.6% at 0.26 cm cm?3 and 85.3% at 5.8 cm cm?3. Based on a single exponential decay function, a general method is presented to estimate for any PCN management measure the average reduction in the number of years needed to ensure that the PCN population falls below a given density. Calculated reductions in the number of years ranged from 2.3 years for 59% hatching (equivalent to 90 days of S. sisymbriifolium) to 4.4 years for 75% of hatching (equivalent to 150 days of S. sisymbriifolium). These reductions were independent of initial and final population density. Our results corroborate the hatch‐inducing effect of S. sisymbriifolium, underline the importance of growth duration and root length density as determinants of the reduction in PCN population that can be achieved and draw attention to the pitfall in methodology that can arise in the study of hatch stimulation.  相似文献   

15.
Eight trials were conducted in commercial potato fields infested with the white potato cyst nematode (wPCN, Globodera pallida) and one in a field infested with the yellow PCN (yPCN, Globodera rostochiensis). Our aims were to produce data to validate and refine a computer‐based program (The Model) for the long‐term management of PCN, to determine nematicide effectiveness and to assess rates of PCN population decline between potato crops. Prior to planting, each farmer applied an overall nematicide treatment to his field, except for ten untreated plots that were widely spaced to encompass a range of PCN population densities. Each untreated plot was paired with a similar plot in the adjacent treated area and all plots were intensively sampled for PCN population densities at planting (Pi) and again at harvest (Pf) when tuber yields were determined. Four trials were re‐sampled 2–4 years later to determine PCN population decline rates. Regressions that form the basis of ‘The Model’ and described the relationship between Pi and tuber yield and PCN population density at harvest were fitted to the results from both the untreated and nematicide treated plots. These regressions also enabled us to estimate the yield potential at each site in the absence of PCN and showed that nematicide treatment generally did not increase yield potential and that both tuber yield and PCN multiplication decreased with increasing Pi. However, there were major differences between sites and cultivars. When untreated, the yield of cv. Maris Piper was hardly affected in a highly organic soil with Pi > 200 eggs g?1 whereas the yield of partially resistant cv. Santé was decreased from a potential of c. 60 t ha?1 to c. 20 t ha?1 in a light silt with Pi = 20 egg g?1 soil. Similarly, untreated wPCN multiplication rates at a low Pi ranged from 46‐fold to >100‐fold. Nematicide effectiveness was estimated from the regressions and, at several sites, yield was decreased despite nematicide treatment. Control of wPCN multiplication was even poorer. In only two of seven trials planted with susceptible cultivars was more than 50% control achieved – maximum populations in treated plots usually exceeded 250 eggs g?1. Partially resistant Santé decreased the multiplication rate of wPCN in the two trials where it was planted. An alternative analysis using Genstat indicated that The Model tended to underestimate the maximum multiplication rate and overestimate the maximum population density. When four sites were re‐sampled 2–4 years after harvest the populations of wPCN had declined by between 15% and 33.5% per annum with a mean of 26% per annum. Modelling indicated that rotations longer than 8 years were required to control wPCN unless other effective control measures, such as growing a partially resistant cultivar, were used.  相似文献   

16.
Two monoclonal antibodies, which differentially recognise the two species of potato cyst nematodes (PCN), Globodera pallida and G. rostochiensis, are described. They have been shown to have potential for quantification of these two species, recognising proteins of the same molecular weight (34 kD) in both species. Further investigation showed these proteins to have isoelectric points at pH values of 5.7 in G. pallida and 5.9 in G. rostochiensis, in common with the proteins used by Fleming & Marks (1983) to differentiate the species of PCN. They are likely to be structurally very similar, with the same physiological function (and therefore similar concentrations) in the two species. In cross-reactivity tests with a wide range of soil nematode species, the antibodies reacted strongly only with species of the genus Globodera, and thereby confirmed their potential as the basis of a quantitative immunoassay likely to be useful in management of PCN populations.  相似文献   

17.
Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro‐environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II‐1, ‐5, and ‐7 mitotypes of the Asia II major clade. The whitefly–endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II‐1 and II‐7 mitotypes (r2 = .9, p < .005), while the Asia II‐5 microbiome was less complex. The microbiome OTU groups were mitotype‐specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype‐microbiome co‐adaptation. The primary endosymbiont Portiera was represented by a single, highly homologous OTU (0%–0.67% divergence). Two of six Arsenophonus OTUs were uniquely associated with Asia II‐5 and ‐7, and one occurred exclusively in Asia II‐1, two only in Asia II‐5, and one in both Asia II‐1 and ‐7. Four other secondary endosymbionts, Cardinium, Hemipteriphilus, Rickettsia, and Wolbachia OTUs, were found at ≤29% frequencies. The most prevalent Arsenophonus OTU was found in all three Asia II mitotypes (55% frequency), whereas the same strain of Cardinium and Wolbachia was found in both Asia II‐1 and ‐5, and a single Hemipteriphilus OTU occurred in Asia II‐1 and ‐7. This pattern is indicative of horizontal transfer, suggestive of a proximity between mitotypes sufficient for gene flow at overlapping mitotype ecological niches.  相似文献   

18.
Abstract

A small DNA fragment (approx. 350 base pairs) from the genome of the potato cyst nematode Globodera pallida Pa2/3 was cloned in a bacterial plasmid. When used as a probe in dot-blot DNA hybridisations against a range of nematodes, the cloned DNA bound to G. pallida Pa2/3 but not to Globodera rostochiensis Rol. The cereal cyst nematode Heterodera avenae, the clover cyst nematode Heterodera trifolii, the root knot nematodes Meloidogyne hapla and Meloidogyne incognita, and the beet cyst nematode Heterodera schactii did not cross-hybridise. This probe can detect as few as six larvae of G. pallida.  相似文献   

19.
The potato cyst nematode, Globodera pallida, is one of the most important pests of potato worldwide. Owing to regulatory considerations and potential environmental impact, control options for this nematode are becoming increasingly limited. Solanum sisymbriifolium and biological control agents offer viable alternative options for controlling G. pallida. Therefore, experiments were conducted to determine the effect of the nematode trap crop S. sisymbriifolium, alone or in combination with the biocontrol agents Trichoderma harzianum or Plectosphaerella cucumerina, on population decline of G. pallida. Experiments were conducted for three different ‘cropping systems’: potato (Solanum tuberosum), S. sisymbriifolium, or soil only (fallow), each followed by a potato crop. Soil was amended with P. cucumerina, T. harzianum or left unamended, and then infested with nematodes at a rate of five eggs g?1 of soil. After 16 weeks in the greenhouse, plants were removed and the soil containing cysts was refrigerated at 4°C for 8 weeks, and then planted to potato. Cysts of G. pallida were counted after an additional 16‐week period. The Pf/Pi of G. pallida was significantly reduced by 99% in potato following S. sisymbriifolium compared to both the potato‐following‐fallow and the potato‐following‐potato treatments. Amendment of soil with T. harzianum significantly reduced Pf/Pi of G. pallida by 42–47% in the potato‐following‐potato but not in either the potato‐after‐fallow nor in the potato‐after‐S. sisymbriifolium cycles which supports evidence that the plant species may play a role in the biocontrol activity of this fungus. Addition of the fungus P. cucumerina resulted in a 64% decrease in Pf/Pi in the potato‐following‐fallow in one experiment, and an 88% decrease in Pf/Pi in potato‐following‐potato but the decrease in Pf/Pi was not consistent over all experiments. However, both biocontrol fungi resulted in lower numbers of progeny cysts after an initial 16‐week incubation with potato. To look at the effect of varied population density of the nematode on efficacy of S. sisymbriifolium to reduce G. pallida populations, potato, S. sisymbriifolium, or barley were planted into soil infested with G. pallida at rates of 5, 20 or 40 eggs g?1 soil applied as cysts (20, 80 or 160 cysts pot?1). After 16 weeks, numbers of cysts produced in each treatment were determined for each infestation rate. No new cysts were recovered from either S. sisymbriifolium or barley treatments, confirming that neither plant is a host for G. pallida. High numbers of cysts were recovered with potato. Soil from each treatment (containing original cysts and newly‐formed cysts when present) were then planted with potato. After an additional 16 weeks, few cysts were found in the potato‐after‐ S. sisymbriifolium treatments regardless of initial infestation rate. When potato followed barley, numbers of cysts were similar to those found after a single cycle of potato, indicating that the barley crop had no effect on the survival of initial inoculum. Overall, these results suggest that S. sisymbriifolium has potential to significantly reduce G. pallida populations, and also that the cropping system (i.e. the sequence of non‐host and host plants) may play a significant role in the efficacy of fungal biological control agents.  相似文献   

20.
While pectate lyases are major parasitism factors in plant-parasitic nematodes, there is little information on the variability of these genes within species and their utility as pathotype or host range molecular markers. We have analysed polymorphisms of pectate lyase 2 (pel-2) gene, which degrades the unesterified polygalacturonate (pectate) of the host cell-wall, in the genus Globodera. Molecular variability of the pel-2 gene and the predicted protein was evaluated in populations of G. rostochiensis, G. pallida, G.mexicana” and G. tabacum. Seventy eight pel-2 sequences were obtained and aligned. Point mutations were observed at 373 positions, 57% of these affect the coding part of the gene and produce 129 aa replacements. The observed polymorphism does not correlate either to the pathotypes proposed in potato cyst nematodes (PCN) or the subspecies described in tobacco cyst nematodes. The trees reveal a topology different from the admitted species topology as G. rostochiensis and G. pallida sequences are more similar to each other than to G. tabacum. Species-specific sites, potentially applicable for identification, and sites distinguishing PCN from tobacco cyst nematodes, were identified. As both G. rostochiensis and G. pallida display the same host range, but distinct from G. tabacum, which cannot parasitize potato plants, it is tempting to speculate that pel-2 genes polymorphism may be implicated in this adaptation, a view supported by the fact that no active pectate lyase 2 was found in G.mexicana”, a close relative of G. pallida that is unable to develop on cultivated potato varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号