首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Acoustic signals among newly diverged taxa have the potential to convey species identity, information that is key to reducing hybridization. Capuchino seedeaters constitute a remarkable example of recently radiated endemic species from the grasslands of South America. They are sexually dimorphic and show striking differences in male plumage coloration and song. Contrasting with this divergence in phenotype most species show extremely low neutral genetic differentiation and lack of reciprocal monophyly, which is interpreted to be a product of recent common ancestry and hybridization. Here we use field‐based playback experiments to test for the first time if males of two species, Sporophila hypoxantha and S. palustris, discriminate between conspecific and heterospecific song. Using various measures of behavior we find that both species react more strongly to their own songs. The response to playback from another southern capuchino cannot be differentiated from that of a control song from a more distantly related Sporophila species. Additionally, we did not find evidence for reinforcement as the response of S. hypoxantha did not differ between individuals that co‐occur with S. palustris and those that do not. Our finding suggests that song, a culturally inherited trait, may help maintain reproductive isolation between species in the rapid and explosive capuchino radiation.  相似文献   

2.
Speciation is a continuous and dynamic process, and studying organisms during the early stages of this process can aid in identifying speciation mechanisms. The mallard (Anas platyrhynchos) and Mexican duck (A. [p.] diazi) are two recently diverged taxa with a history of hybridization and controversial taxonomy. To understand their evolutionary history, we conducted genomic scans to characterize patterns of genetic diversity and divergence across the mitochondrial DNA (mtDNA) control region, 3523 autosomal loci and 172 Z‐linked sex chromosome loci. Between the two taxa, Z‐linked loci (ΦST = 0.088) were 5.2 times more differentiated than autosomal DNA (ΦST = 0.017) but comparable to mtDNA (ΦST = 0.092). This elevated Z differentiation deviated from neutral expectations inferred from simulated data that incorporated demographic history and differences in effective population sizes between marker types. Furthermore, 3% of Z‐linked loci, compared to <0.1% of autosomal loci, were detected as outlier loci under divergent selection with elevated relative (ΦST) and absolute (dXY) estimates of divergence. In contrast, the ratio of Z‐linked and autosomal differentiation among the seven Mexican duck sampling locations was close to 1:1 (ΦST = 0.018 for both markers). We conclude that between mallards and Mexican ducks, divergence at autosomal markers is largely neutral, whereas greater divergence on the Z chromosome (or some portions thereof) is likely the product of selection that has been important in speciation. Our results contribute to a growing body of literature indicating elevated divergence on the Z chromosome and its likely importance in avian speciation.  相似文献   

3.
Efforts to detect loci under selection in plants have mostly focussed on single species. However, assuming that intraspecific divergence may lead to speciation, comparisons of genetic variation within and among recently diverged taxa can help to locate such genes. In this study, coalescent and outlier detection methods were used to assess nucleotide polymorphism and divergence at 79 nuclear gene fragments (1212 SNPs) in 16 populations (153 individuals) of the closely related, but phenotypically and ecologically distinct, pine taxa Pinus mugo, P. uliginosa and P. uncinata across their European distributions. Simultaneously, mitochondrial DNA markers, which are maternally inherited in pines and distributed by seeds at short geographic distance, were used to assess genetic relationships of the focal populations and taxa. The majority of nuclear loci showed homogenous patterns of variation between the taxa due to a high number of shared SNPs and haplotypes, similar levels of polymorphism, and low net divergence. However, against this common genetic background and an overall low population structure within taxa at mitochondrial markers, we identified several genes showing signatures of selection, accompanied by significant intra- and interspecific divergence. Our results indicate that loci involved in species divergence may be involved in intraspecific local adaptation.  相似文献   

4.
Local adaptation to contrasting biotic or abiotic environments is an important evolutionary step that presumably precedes floral diversification at the species level, yet few studies have demonstrated the adaptive nature of intraspecific floral divergence in wild plant populations. We combine a population‐genomic approach with phenotypic information on floral traits to examine whether the differentiation in metric floral traits exhibited by 14 populations of the southern Spanish hawk moth‐pollinated violet Viola cazorlensis reflects adaptive divergence. Screening of many amplified fragment length polymorphism (AFLP) loci using a multiple‐marker‐based neutrality test identified nine outlier loci (2.6% of the total) that departed from neutral expectations and were potentially under selection. Generalized analysis of molecular variance revealed significant relationships between genetic distance and population divergence in three floral traits when genetic distance was based on outlier loci, but not when it was based on neutral ones. Population means of floral traits were closely correlated with population scores on the first principal coordinate axis of the genetic distance matrix using outlier loci, and with the allelic frequencies of four of the outlier loci. Results strongly support the adaptive nature of intraspecific floral divergence exhibited by V. cazorlensis and illustrate the potential of genome scans to identify instances of adaptive divergence when used in combination with phenotypic information.  相似文献   

5.
During speciation‐with‐gene‐flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome‐wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome‐wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric species pairs provide a window on the speciation‐with‐gene‐flow mechanism.  相似文献   

6.
Understanding the genetic bases of biological diversification is a long‐standing goal in evolutionary biology. Here, we investigate whether replicated cases of adaptive divergence involve the same genomic regions in the pea aphid, Acyrthosiphon pisum, a large complex of genetically differentiated biotypes, each specialized on different species of legumes. A previous study identified genomic regions putatively involved in host‐plant adaptation and/or reproductive isolation by performing a hierarchical genome scan in three biotypes. This led to the identification of 11 FST outliers among 390 polymorphic microsatellite markers. In this study, the outlier status of these 11 loci was assessed in eight biotypes specialized on other host plants. Four of the 11 previously identified outliers showed greater genetic differentiation among these additional biotypes than expected under the null hypothesis of neutral evolution (α < 0.01). Whether these hotspots of genomic divergence result from adaptive events, intrinsic barriers or reduced recombination is discussed.  相似文献   

7.
Via S  West J 《Molecular ecology》2008,17(19):4334-4345
Early in ecological speciation, the genomically localized effects of divergent selection cause heterogeneity among loci in divergence between incipient species. We call this pattern of genomic variability in divergence the 'genetic mosaic of speciation'. Previous studies have used F(ST) outliers as a way to identify divergently selected genomic regions, but the nature of the relationship between outlier loci and quantitative trait loci (QTL) involved in reproductive isolation has not yet been quantified. Here, we show that F(ST) outliers between a pair of incipient species are significantly clustered around QTL for traits that cause ecologically based reproductive isolation. Around these key QTL, extensive 'divergence hitchhiking' occurs because reduced inter-race mating and negative selection decrease the opportunity for recombination between chromosomes bearing different locally adapted QTL alleles. Divergence hitchhiking is likely to greatly increase the opportunity for speciation in populations that are sympatric, regardless of whether initial divergence was sympatric or allopatric. Early in ecological speciation, analyses of population structure, gene flow or phylogeography based on different random or arbitrarily chosen neutral markers should be expected to conflict--only markers in divergently selected genomic regions will reveal the evolutionary history of adaptive divergence and ecologically based reproductive isolation. Species retain mosaic genomes for a very long time, and gene exchange in hybrid zones can vary dramatically among loci. However, in hybridizing species, the genomic regions that affect ecologically based reproductive isolation are difficult to distinguish from regions that have diverged for other reasons.  相似文献   

8.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

9.
10.
Understanding the origin of new species is a central goal in evolutionary biology. Diverging lineages often evolve highly heterogeneous patterns of genetic differentiation; however, the underlying mechanisms are not well understood. We investigated evolutionary processes governing genetic differentiation between the hybridizing campions Silene dioica (L.) Clairv. and S. latifolia Poiret. Demographic modelling indicated that the two species diverged with gene flow. The best‐supported scenario with heterogeneity in both migration rate and effective population size suggested that a small proportion of the loci evolved without gene flow. Differentiation (F ST) and sequence divergence (d XY) were correlated and both tended to peak in the middle of most linkage groups, consistent with reduced gene flow at highly differentiated loci. Highly differentiated loci further exhibited signatures of selection. In between‐species population pairs, isolation by distance was stronger for genomic regions with low between‐species differentiation than for highly differentiated regions that may contain barrier loci. Moreover, differentiation landscapes within and between species were only weakly correlated, suggesting that linked selection due to shared recombination and gene density landscapes is not the dominant determinant of genetic differentiation in these lineages. Instead, our results suggest that divergent selection shaped the genomic landscape of differentiation between the two Silene species, consistent with predictions for speciation in the face of gene flow.  相似文献   

11.
The maintenance or breakdown of reproductive isolation is an observable outcome of secondary contact between species. In cases where hybrids beyond the F1 are formed, the representation of each species' ancestry can vary dramatically among genomic regions. This genomic heterogeneity in ancestry and introgression can offer insight into evolutionary processes, particularly if introgression is compared in multiple hybrid zones. Similarly, considerable heterogeneity exists across the genome in the extent to which populations and species have diverged, reflecting the combined effects of different evolutionary processes on genetic variation. We studied hybridization across two hybrid zones of two phenotypically well‐differentiated bird species in Mexico (Pipilo maculatus and P. ocai), to investigate genomic heterogeneity in differentiation and introgression. Using genotyping‐by‐sequencing (GBS) and hierarchical Bayesian models, we genotyped 460 birds at over 41 000 single nucleotide polymorphism (SNP) loci. We identified loci exhibiting extreme introgression relative to the genome‐wide expectation using a Bayesian genomic cline model. We also estimated locus‐specific FST and identified loci with exceptionally high genetic divergence between the parental species. We found some concordance of locus‐specific introgression in the two independent hybrid zones (6–20% of extreme loci shared across zones), reflecting areas of the genome that experience similar gene flow when the species interact. Additionally, heterogeneity in introgression and divergence across the genome revealed another subset of loci under the influence of locally specific factors. These results are consistent with a history in which reproductive isolation has been influenced by a common set of loci in both hybrid zones, but where local environmental and stochastic factors also lead to genomic differentiation.  相似文献   

12.
Comparative studies of closely related taxa can provide insights into the evolutionary forces that shape genome evolution and the prevalence of convergent molecular evolution. We investigated patterns of genetic diversity and differentiation in stonechats (genus Saxicola), a widely distributed avian species complex with phenotypic variation in plumage, morphology and migratory behaviour, to ask whether similar genomic regions have become differentiated in independent, but closely related, taxa. We used whole‐genome pooled sequencing of 262 individuals from five taxa and found that levels of genetic diversity and divergence are strongly correlated among different stonechat taxa. We then asked whether these patterns remain correlated at deeper evolutionary scales and found that homologous genomic regions have become differentiated in stonechats and the closely related Ficedula flycatchers. Such correlation across a range of evolutionary divergence and among phylogenetically independent comparisons suggests that similar processes may be driving the differentiation of these independently evolving lineages, which in turn may be the result of intrinsic properties of particular genomic regions (e.g. areas of low recombination). Consequently, studies employing genome scans to search for areas important for reproductive isolation or adaptation should account for corresponding regions of differentiation, as these regions may not necessarily represent speciation islands or evidence of local adaptation.  相似文献   

13.
Genome scans in recently separated species can inform on molecular mechanisms and evolutionary processes driving divergence. Large‐scale polymorphism data from multiple species pairs are also key to investigate the repeatability of divergence—whether radiations tend to show parallel responses to similar selection pressures and/or underlying molecular forces. Here, we used whole‐genome resequencing data from six wood white (Leptidea sp.) butterfly populations, representing three closely related species with karyomorph variation, to infer the species' demographic history and characterize patterns of genomic diversity and differentiation. The analyses supported previously established species relationships, and there was no evidence for postdivergence gene flow. We identified significant intraspecific genetic structure, in particular between karyomorph extremes in the wood white (L. sinapis)—a species with a remarkable chromosome number cline across the distribution range. The genomic landscapes of differentiation were erratic, and outlier regions were narrow and dispersed. Highly differentiated (FST) regions generally had low genetic diversity (θπ), but increased absolute divergence (DXY) and excess of rare frequency variants (low Tajima's D). A minority of differentiation peaks were shared across species and population comparisons. However, highly differentiated regions contained genes with overrepresented functions related to metabolism, response to stimulus and cellular processes, indicating recurrent directional selection on a specific set of traits in all comparisons. In contrast to the majority of genome scans in recently diverged lineages, our data suggest that divergence landscapes in Leptidea have been shaped by directional selection and genetic drift rather than stable recombination landscapes and/or introgression.  相似文献   

14.
Genome scans using large numbers of randomly selected markers have revealed a small proportion of loci that deviate from neutral expectations and so may mark genomic regions that contribute to local adaptation. Measurements of sequence differentiation and identification of genes in these regions is important but difficult, especially in organisms with limited genetic information available. We have followed up a genome scan in the marine gastropod, Littorina saxatilis, by searching a bacterial artificial chromosome library with differentiated and undifferentiated markers, sequencing four bacterial artificial chromosomes and then analysing sequence variation in population samples for fragments at, and close to the original marker polymorphisms. We show that sequence differentiation follows the patterns expected from the original marker frequencies, that differentiated markers identify independent and highly localized sites and that these sites fall outside coding regions. Two differentiated loci are characterized by insertions of putative transposable elements that appear to have increased in frequency recently and which might influence expression of downstream genes. These results provide strong candidate loci for the study of local adaptation in Littorina. They demonstrate an approach that can be applied to follow up genome scans in other taxa and they show that the genome scan approach can lead rapidly to candidate genes in nonmodel organisms.  相似文献   

15.
The genic species concept implies that while most of the genome can be exchanged somewhat freely between species through introgression, some genomic regions remain impermeable to interspecific gene flow. Hence, interspecific differences can be maintained despite ongoing gene exchange within contact zones. This study assessed the heterogeneous patterns of introgression at gene loci across the hybrid zone of an incipient progenitor–derivative species pair, Picea mariana (black spruce) and Picea rubens (red spruce). The spruce taxa likely diverged in geographic isolation during the Pleistocene and came into secondary contact during late Holocene. A total of 300 SNPs distributed across the 12 linkage groups (LG) of black spruce were genotyped for 385 individual trees from 33 populations distributed across the allopatric zone of each species and within the zone of sympatry. An integrative framework combining three population genomic approaches was used to scan the genomes, revealing heterogeneous patterns of introgression. A total of 23 SNPs scattered over 10 LG were considered impermeable to introgression and putatively under diverging selection. These loci revealed the existence of impermeable genomic regions forming the species boundary and are thus indicative of ongoing speciation between these two genetic lineages. Another 238 SNPs reflected selectively neutral diffusion across the porous species barrier. Finally, 39 highly permeable SNPs suggested ancestral polymorphism along with balancing selection. The heterogeneous patterns of introgression across the genome indicated that the speciation process between black spruce and red spruce is young and incomplete, albeit some interspecific differences are maintained, allowing ongoing species divergence even in sympatry. The approach developed in this study can be used to track the progression of ongoing speciation processes.  相似文献   

16.
Nucleotide polymorphisms at genomic regions including 17 nuclear loci, two chloroplast and one mitochondrial DNA fragments were used to study the speciation history of three pine species: dwarf mountain pine (Pinus mugo), peat‐bog pine (P. uliginosa) and Scots pine (P. sylvestris). We set out to investigate three specific speciation scenarios: (I) P. uliginosa is a homoploid hybrid between the other two, (II) the species have evolved without gene flow after divergence and (III) there has been substantial gene flow between the species since their divergence. Overall, the genetic data suggest that P. mugo and P. uliginosa share the same gene pool (average net divergence of 0.0001) and that the phenotypic differences (e.g. growth form) are most likely due to very limited areas of the genome. P. mugo and P. uliginosa are more diverged from P. sylvestris than from each other (average net divergence of 0.0027 and 0.0026, respectively). The nucleotide patterns can best be explained by the divergence with migration speciation scenario, although the hybrid speciation scenario with small genomic contribution from P. sylvestris cannot be completely ruled out. We suggest that the large amount of shared polymorphisms between the pine taxa and the lack of monophyly at all loci studied between P. sylvestris and P. mugoP. uliginosa can largely be explained by relatively recent speciation history and large effective population sizes but also by interspecific gene flow. These closely related pine taxa form an excellent system for searching for loci involved in adaptive variation as they are differentiated in phenotype and ecology but have very similar genetic background.  相似文献   

17.
The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species.  相似文献   

18.
Soldanella contains 16 species of herbaceous perennials that are endemic to the central and south European high mountains. The genus is ecogeographically subdivided into forest/montane and alpine species. Evolutionary relationships and large-scale biogeographic patterns were inferred from parsimony analyses of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA, and genetic distance analyses based on amplified fragment length polymorphism (AFLP) markers. The ITS region proved useful for examining subgeneric relationships and testing hypotheses on genus-wide divergence times, whereas the AFLP markers were suitable for studying relationships among closely related taxa and biogeographic patterns of divergence. Neither ITS nor AFLP data supported sectional delimitations, particularly those related to the grouping of S. alpina (sect. Soldanella) with S. pusilla (sect. Tubiflores), which may be the result of hybridization. Additional results and conclusions drawn are (1) Soldanella is derived from an ancestor of Asian origin with a montane ecology; (2) estimates of divergence times suggest a late Quaternary origin of the genus; (3) alpine species of sect. Tubiflores diverged from within a paraphyletic sect. Soldanella of mainly montane species; (4) alpine and montane species of Soldanella experienced different cycles of range expansion and contraction during late Quaternary climatic changes, resulting in differential patterns of geographic distribution; and (5) AFLP divergence among montane species from eastern Europe was lower than between alpine species; we hypothesize that the latter differentiated in allopatric regions of expansion during glacials, while the former experienced secondary contact at lower elevations in more southern refugia.  相似文献   

19.
Oaks (Quercus: Fagaceae) commonly interbreed yet retain their morphological, genetic and ecological distinctiveness. Post‐zygotic isolation mechanisms, such as ecologically dependent selection on adaptive loci, may therefore limit introgression. To test this hypothesis, we quantified hybridization and genetic divergence across the contact zone of four red oaks (Quercus section Lobatae) in the Great Lakes region of North America using a suite of 259 amplified fragment length polymorphisms and 27 genic and genomic microsatellite markers. First, we identified hybrids using genetic structure analysis and confirmed the reliability of our assignments via simulations. Then, we identified candidate loci for species maintenance with three complementary tests for selection and obtained partial gene sequences linked to an outlier locus and three other loci. We detected evidence of recent hybridization among all species and considerable gene flow between Q. ellipsoidalis and Q. velutina. Overall, c. 20% of Q. velutina had recent ancestry from Q. ellipsoidalis, whereas nearly 30% of Q. ellipsoidalis had a Q. velutina ancestor. Most loci were negligibly to weakly differentiated among species, but two gene‐linked microsatellites deviated significantly from neutral expectations in multiple, complementary outlier tests. Both outlier loci were located in the same 15‐cM bin on an existing Q. robur linkage map, a region under divergent selection in other oak species. Adaptive loci in this highly differentiated genomic region may contribute to ecological divergence among species and limit introgression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号