首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. Anopheles arabiensis Patton and An. funestus Giles were identified as vectors of Plasmodium falciparum malaria in the Mwea-Tebere irrigation scheme, Kenya. An. arabiensis was the only member of the An. gambiae complex identified from chromosome characteristics. Other Anopheles species found included An. pharoensis Theobald, An. rufipes Gough and An. coustani Laveran. Survival rates per gonotrophic cycle for An. arabiensis averaged 0.37 during the short rains (October-November), 0.49 during the dry season (February) and 0.78 during the long rains (May-June). Vectorial capacities were correspondingly low due to low survival rates and a high degree of zoophily. The average duration of infective life for P. falciparum was 0.2 days for both An. arabiensis and An. funestus. In contrast, entomological inoculation rates were comparatively high: 6-8 infective bites/man/month. An. pharoensis averaged 110 bites/man/night during the short rains; 1/999 (0.1%) was positive by ELISA for P. falciparum circumsporozoite antigen, but the ELISA evidence is not conclusive for vector incrimination. In correspondence with clinical observations, the transmission of P. malariae and P. ovale is unlikely due to the low vector survival rates. The observed anomaly between low vectorial capacities and high entomological inoculation rates demonstrates the importance of accurately estimating vector sporozoite rates to monitor unstable malaria transmission in irrigated areas.  相似文献   

2.
Malaria vector Anopheles and other mosquitoes (Diptera: Culicidae) were monitored for 12 months during 1994-95 in villages of Lower Moshi irrigation area (37 degrees 20' E, 3 degrees 21' S; approximately 700 m a.s.l.) south of Mount Kilimanjaro in northern Tanzania. Adult mosquito populations were sampled fortnightly by five methods: human bait collection indoors (18.00-06.00 hours) and outdoors (18.00-24.00 hours); from daytime resting-sites indoors and outdoors; by CDC light-traps over sleepers. Anopheles densities and rates of survival, anthropophily and malaria infection were compared between three villages representing different agro-ecosystems: irrigated sugarcane plantation; smallholder rice irrigation scheme, and savannah with subsistence crops. Respective study villages were Mvuleni (population 2200), Chekereni (population 3200) and Kisangasangeni (population approximately/= 1000), at least 7 km apart. Anopheles arabiensis Patton was found to be the principal malaria vector throughout the study area, with An. funestus Giles sensu lato of secondary importance in the sugarcane and savannah villages. Irrigated sugarcane cultivation resulted in water pooling, but this did not produce more vectors. Anopheles arabiensis densities averaged four-fold higher in the ricefield village, although their human blood-index was significantly less (48%) than in the sugarcane (68%) or savannah (66%) villages, despite similar proportions of humans and cows (ratio 1:1.1-1.4) as the main hosts at all sites. Parous rates, duration of the gonotrophic cycle and survival rates of An. arabiensis were similar in villages of all three agro-ecosystems. The potential risk of malaria, based on measurements of vectorial capacity of An. arabiensis and An.funestus combined, was four-fold higher in the ricefield village than in the sugarcane or savannah villages nearby. However, the more realistic estimate of malaria risk, based on entomological inoculation rates, indicated that exposure to infective vectors was 61-68% less for people in the ricefield village, due to the much lower sporozoite rate in An. arabiensis (ricefield 0.01%, sugarcane 0.1%, savannah 0.12%). This contrast was attributed to better socio-economic conditions of rice farmers, facilitating relatively more use of antimalarials and bednets for their families. Our findings show that, for a combination of reasons, the malaria challenge is lower for villagers associated with an irrigated rice-growing scheme (despite greater malaria vector potential), than for adjacent communities with other agro-ecosystems bringing less socio-economic benefits to health. This encourages the development of agro-irrigation schemes in African savannahs, provided that residents have ready access to antimalaria materials (i.e. effective antimalaria drugs and insecticidal bednets) that they may better afford for protection against the greater vectorial capacity of An. arabiensis from the ricefield agro-ecosystem.  相似文献   

3.
Transmission characteristics of malaria were studied in Matola, a coastal suburb of Maputo, the capital City, in southern Mozambique, from November 1994 to April 1996. The local climate alternates between cool dry season (May-October) and hot rainy season (November-April) with mean annual rainfall 650-850 mm. Saltmarsh and freshwater pools provide mosquito breeding sites in Matola. Malaria prevalence reached approximately 60% among people living nearest to the main breeding sites of the vectors. Plasmodium falciparum caused 97% of malaria cases, others being P. malariae and P. ovale. Potential malaria vector mosquitoes (Diptera: Culicidae) collected at Matola during daytime indoor-resting (n = 1021) and on human bait at night (n = 5893) comprised 12% Anopheles coustani Laveran (93% biting outdoors), 46% An. funestus Giles (68% biting indoors) and 42% An. gambiae Giles sensu lato (60% biting outdoors). All 215 specimens of An. gambiae s.l. identified genetically were An. arabiensis Patton. Anopheles funestus populations remained stable throughout the year, whereas densities of the An. gambiae complex fluctuated considerably, with An. arabiensis peaking during the rainy season. No concomitant rise in malaria incidence was observed. Human landing indices of An. funestus and An. arabiensis averaged 1.8 and 3.8 per man-night, respectively. Overall Plasmodium sporozoite rates were 2.42+/-1.24% in 2181 An. funestus and 1.11+/-1.25% in 1689 An. arabiensis dissected and examined microscopically. Mean daily survival rates were 0.79 for both vector species. Estimated infective bites/person/year were 15 An. funestus and 12 An. arabiensis. Biting rates were greatest at 2100-24.00 hours for An. funestus (68% endophagic) and 21.00-03.00 hours for An. arabiensis (40% endophagic). The entomological inoculation rate (EIR) declined sharply over very short distances (50% per 90m) away from breeding-sites of the vectors. Consequently, P. falciparum prevalence among Matola residents was halved 350 m within the town. Implications for the protective effectiveness of a 'cordon sanitaire' by residual house-spraying and/or the use of insecticide-treated bednets are discussed.  相似文献   

4.
Abstract. For two sibling species of mosquitoes belonging to the Anopheles gambiae complex of malaria vectors, the effects of body size (wing length) and bloodmeal size (haematin excretion) on fecundity of wild females were investigated in The Gambia, West Africa. Freshly blood-fed individuals from sympatric populations of An.arabiensis and An.gambiae sensu stricto were sampled by collection at 07.00–09.00 hours from within bednets during July/August 1993, at the beginning of the rainy season. The possible confounding effect of infection with Plasmodium parasites was removed by eliminating infected mosquitoes from the study samples. An.arabiensis females comprised 75% of the An.gambiae sensu law population and were significantly larger (greater mean wing length) than those of An.gambiae s.s. mosquitoes. Mean egg production per female (for the subsequent gonotrophic cycle, excluding pre-gravids) for the two species was not significantly different, though the relationship between wing length and egg production showed An.gambiae s.s. to be more fecund than the An.arabiensis of the same size. Pre-gravid An.gambiae s.s. had consumed significandy smaller bloodmeals than gravid females but the mean wing length of these two gonotrophic categories was not significantly different. In contrast, An.arabiensis pre-gravids were smaller and had consumed smaller bloodmeals than the gravids.  相似文献   

5.
Abstract.Laboratory colonies of the human malaria vectors Anopheles gambiae Giles and An. arabiensis Patton have distinct flight tones. If flight tone similarly distinguishes natural populations of these sympatric sibling species, it may play a role in reproductive isolation of swarms that are otherwise behaviourally identical. To assess the fidelity of flight tone differences in natural populations, flight tone was measured in the F1 progeny of mosquitoes of both species captured in western Kenya. Flight tone distributions of wild An . gambiae and An. arabiensis were similar to their laboratory conspecifics. However, interspecies comparisons of flight tone of wild mosquitoes revealed significantly different but overlapping distributions for both sexes. Furthermore, when the effect of body size on flight tone was determined, there was a positive correlation between wing length and flight tone for both sexes of An. gambiae and An. arabiensis , suggesting that mosquito size is a significant variable affecting flight tone. Although these findings diminish any practical benefit of flight tone as a diagnostic tool in species identification, its potential role in pre‐mating species recognition needs further investigation.  相似文献   

6.
Onyabe DY  Conn JE 《Molecular ecology》2001,10(11):2577-2591
Ten microsatellite loci, four located within and six outside chromosome inversions, were employed to study the genetic structure of Anopheles arabiensis across the ecological zones of Nigeria (arid savannah in the north gradually turns into humid forest in the south). Regardless of location within or outside inversions, genetic variability at all loci was characterized by a reduction in both the number of alleles per locus and heterozygosity from savannah to forest. Across all loci, all but one allele in the forest also occurred in the savannah, whereas at least 78 alleles in the savannah were missing in the forest. Genetic differentiation increased with geographical distance; consequently, genetic distances between zones exceeded those within zones. The largest genetic distances were between localities at the extremes of the transect (range F(ST) = 0.196-0.258 and R(ST) = 0.183-0.468) and were as large as those between A. arabiensis and Anopheles gambiae s.s. Gene flow across the country was very low, so that Nm between the extremes of the transect was < 1. These data suggest that A. arabiensis has extended its range from the savannah into the forest during which it experienced a reduction in effective population size due to sequential founder effects. Gene flow post range expansion appears too restricted by geographical distance to homogenize the gene pool of A. arabiensis across Nigeria.  相似文献   

7.
Mark–release–recapture experiments with Anopheles gambiae s.l. were performed during the wet seasons of 1993 and 1994 in Banambani, Mali. All recaptured mosquitoes were identified to species by PCR analysis and, when possible, by chromosomal analysis to chromosomal form. Two species of the An. gambiae complex were present: An. gambiae s.s. and An. arabiensis ; their ratio differed greatly from one year to the next. Three chromosomal forms of An. gambiae s.s. were found – Bamako, Savanna and Mopti. The drier 1993 was characterized by a high frequency of An. arabiensis and of the Mopti chromosomal forms of An. gambiae s.s. These trends were consistent with large-scale geographical patterns of abundance along a precipitation gradient. We observed no difference in dispersal between the two species, nor among the chromosomal forms of An. gambiae s.s. Therefore, in this situation at least, it is reasonable to group such data on the An. gambiae complex as a whole for analysis. Population size of An. gambiae s.l. females in the village was estimated to be 9000–11 000 in 1993 and 28 000 in 1994. The corresponding numbers were somewhat higher when independently-derived values of daily survival were used. These were consistent with estimates of effective population size obtained from patterns of gene frequency change.  相似文献   

8.
Variation at 12 microsatellite loci was investigated to assess the impact of the implementation of insecticide-treated bed nets (ITNs) on the genetic structure of Anopheles arabiensis in Simatou, a village surrounded by irrigated rice fields in the Sahelian area of Cameroon. The An. arabiensis population of Simatou was sampled twice before ITN implementation, and twice after. Effective population size estimates (N(e)) were similar across each time point, except for the period closely following ITN introduction where a nonsignificant reduction was recorded. Hence, we believe that ITN implementation resulted in a temporary bottleneck, rapidly followed by a demographic expansion. The genetic diversity of the population was not significantly affected since different genetic parameters (allele number, observed and expected heterozygosities) remained stable. Low estimates of genetic differentiation between the populations from Simatou and Lagdo, separated by 300 km, suggested extensive gene flow among populations of An. arabiensis in the Sahelian region of Cameroon. A decrease in the susceptibility to deltamethrin was observed following ITN introduction, but no kdr mutation was detected and a metabolic resistance mechanism is probably involved. The temporary effect of ITNs on the genetic structure of An. arabiensis population suggests that, to optimize the success of any control programme of this species based on ITNs, the control area should be very large and the programme should be implemented for a long period of time.  相似文献   

9.
Mosquito larvae of the sibling species Anopheles arabiensis Patton and An. gambiae Giles sensu stricto (Diptera: Culicidae) were investigated for interspecific competition. Single-species and mixed-species populations were reared at 27 degrees C from the first instar to pupation at different densities (100, 200 or 400 larvae/200 cm2 tray) with a constant amount of food, 0.2 mg/larva/day. Pupae obtained from mixed populations were identified to species using PCR. Both species had a 1:1 sex ratio at pupation. Development time to pupation averaged about one day less for An. arabiensis compared to An. gambiae, ranging from 0.93-1.49d for males and from 0.44-0.84 d for females in single populations. In mixed species populations the difference for males ranged from 0.99-1.58d and for females from 0.93-1.62d. Survival rates of An. gambiae s.s. were significantly higher than those of An. arabiensis in both the single-species and mixed-species populations. Mixed-species rearing did not have an effect on the survival of An. gambiae, whereas the mortality rate of An. arabiensis was significantly higher in mixed populations than when only this species was reared at the same densities, suggesting a competitive disadvantage for An. arabiensis in mixed populations. High proportions of larvae (4-35%) were lost during development; these losses could not be accounted for by corpses found in the rearing pans. The possibility of cannibalism was investigated by rearing each species separately in small containers (five per 50 ml), inspected every 6h, but no cannibalism was detected at any stage of development in either species. It was concluded that, under these experimental circumstances, interspecific competition between both species did occur but with a detrimental effect on An. arabiensis only. Relevance of these findings to the ecology of both species in the field is discussed briefly.  相似文献   

10.
A strain of Anopheles arabiensis resistant to both malathion and dieldrin was crossed and backcrossed to a susceptible strain. The progeny were tested on each insecticide in turn. Less than 50% mortality in the second insecticide exposure among the backcross progeny indicated linkage between the resistance genes. In a backcross of A. gambiae X A. arabiensis hybrids a recombination rate of 7.5% was observed. A Y-translocation strain of A. arabiensis showed less than 2.8% recombination between the resistance genes. It is impossible to confirm the genotype of apparent recombinants using existing stocks, but the two resistance mechanisms are biochemically distinguishable. If the two genes are very closely linked, linkage disequilibrium could influence the consequences of switching to malathion spraying after dieldrin resistance has evolved.  相似文献   

11.
The species composition of malaria vector mosquitoes belonging to the Anopheles gambiae complex (Diptera: Culicidae) from >40 localities in Sudan, representing most ecological situations, was determined by analysis of ovarian polytene chromosomes. Of 2162 females, 93% were identified as An. arabiensis Patton and 7% were An. gambiae Giles sensu stricto. No hybrids were found between the two species. Anopheles arabiensis occurred in all but two sites, whereas An. gambiae s.s. was effectively limited to the southernmost, more humid localities. For chromosomal paracentric inversions, the degree of polymorphism was low in An. gambiae s.s. (inversions 2La, 2Rb and 2Rd), higher in An. arabiensis (inversions Xe, 2Ra, b, bc, d1, s; 3Ra, d). Anopheles gambiae samples from Sudan were all apparently panmictic, i.e. they did not show restricted gene flow such as observed among West African populations (interpreted as incipient speciation). Chromosomal inversion patterns of An. gambiae in southern Sudan showed characteristics of intergrading Savanna/Forest populations similar to those observed in comparable eco-climatic situations of West Africa. Anopheles arabiensis was polymorphic for inversion systems recorded in West Africa (2Ra, 2Rb, 2Rdl, 3Ra) and for a novel 2Rs polymorphism, overlapping with inversion systems 2Rb and 2Rd1. Samples carrying the 2Rs inversion were mostly from Khashm-el-Girba area in central-eastern Sudan. In the great majority of the samples all polymorphic inversions were found to be in Hardy-Weinberg equilibrium. Sudan populations of An. arabiensis should therefore be considered as generally panmictic. Anopheles arabiensis shows more inversion polymorphism in west than in east African populations. Sudan populations have more evident similarities with those from westwards than those from eastwards of the Great Rift Valley. The possible influence of the Rift on evolution of An. arabiensis is discussed.  相似文献   

12.
This study examined the population genetic structure of the major malaria vector, Anopheles arabiensis mosquitoes, in Ethiopia and Eritrea. Ethiopia and Eritrea have great geographical diversity, with high mountains, rugged plateaus, deep gorges, and rolling plains. The plateau is bisected diagonally by the Great Rift Valley into the Northwestern Highlands and the Southeastern Highlands. Five A. arabiensis populations from the Northwestern Highlands region and two populations from high-altitude sites in the Great Rift Valley were genotyped using six microsatellite markers to estimate the genetic diversity and population genetic structure of A. arabiensis. We found that A. arabiensis populations from the Northwestern Highlands and the Great Rift Valley region showed a similar level of genetic diversity. The genetic differentiation (F(ST)) of the five mosquito populations within the Northwestern Highlands region was 0.038 (P <.001), while the two populations within the Great Rift Valley showed little genetic differentiation (F(ST) = 0.007, P <.01). The degree of genetic differentiation between the Northwestern Highlands region and the Great Rift Valley region was small but statistically significant (F(ST) = 0.017, P <.001). The population genetic structure of A. arabiensis in the study area did not follow the isolation-by-distance model (r(2) = 0.014, P >.05). The low F(ST) estimates for A. arabiensis populations in Ethiopia and Eritrea are consistent with the general population genetic structure of this species in East Africa based on other molecular markers.  相似文献   

13.
Slotman M  Della Torre A  Powell JR 《Genetics》2004,167(1):275-287
Male hybrids between Anopheles gambiae and An. arabiensis suffer from hybrid sterility, and inviability effects are sometimes present as well. We examined the genetic basis of these reproductive barriers between the two species, using 21 microsatellite markers. Generally, recessive inviability effects were found on the X chromosome of gambiae that are incompatible with at least one factor on each arabiensis autosome. Inviability is complete when the gambiae and arabiensis inviability factors are hemi- or homozygous. Using a QTL mapping approach, regions that contribute to male hybrid sterility were also identified. The X chromosome has a disproportionately large effect on male hybrid sterility. Additionally, several moderate-to-large autosomal QTL were found in both species. The effect of these autosomal QTL is contingent upon the presence of an X chromosome from the other species. Substantial regions of the autosomes do not contribute markedly to male hybrid sterility. Finally, no evidence for epistatic interactions between conspecific sterility loci was found.  相似文献   

14.
Birth rate and immature survival rate in group living primates have been predicted to vary as a function of group size. These predictions were tested with data from a wild population of lion-tailed macaques in the Anamalai Wildlife Sanctuary, Tamil Nadu (India). Group size and composition, births, and mortality were monitored from eight groups for one to six years. The rate of growth of groups, birth rate, and survival rate were examined in relation to group size. The rate of growth of a group was a decreasing function of group size. Birth rate was also a decreasing function of group size and the number of adult females in the group. The sample size for survival rate of adults was too small to test for their dependence on group size. Immature survival was independent of group size, but the analysis was based on a very small sample. It is possible that the nature of dependence of net growth rate, birth rate, and survival rate on group size could be different outside the range of group sizes on which the analysis was based. The stronger relationship between birth rate and group size in the lion-tailed macaque, in relation to other primates, might be the result of its low birth rate as well as the relatively low temporal variation in resources in the rain forest. Limited data available from other sites indicate that the observed relationship between birth rate and group size might be spatially stable.  相似文献   

15.
Anopheles gambiae Giles s.s. and Anopheles arabiensis Patton (Diptera: Culicidae) are major vectors of malaria in Nigeria. We used 1115 bp of the mitochondrial COI gene to assess their population genetic structures based on samples from across Nigeria (n = 199). The mtDNA neighbour-joining tree, based on F(ST) estimates, separated An. gambiae M and S forms, except that samples of An. gambiae M from Calabar clustered with all the An. gambiae S form. Anopheles arabiensis and An. gambiae could be combined into a single star-shaped, parsimonious haplotype network, and shared three haplotypes. Haplotype diversity values were high in An. arabiensis and An. gambiae S, and intermediate in An. gambiae M; all nucleotide diversities were relatively low. Taken together, patterns of haplotype diversity, the star-like genealogy of haplotypes, five of seven significant neutrality tests, and the violation of the isolation-by-distance model indicate population expansion in An. arabiensis and An. gambiae S, but the signal was weak in An. gambiae M. Selection is supported as an important factor shaping genetic structure in An. gambiae in Nigeria. There were two geographical subdivisions in An. arabiensis: one included all southern localities and all but two central localities; the other included all northern and two central localities. Re-analysing an earlier microsatellite dataset of An. arabiensis using a Bayesian method determined that there were two distinctive clusters, northern and southern, that were fairly congruent with the mtDNA subdivisions. There was a trend towards decreasing genetic diversity in An. arabiensis from the northern savannah to the southern rainforest that corroborated previous data from microsatellites and polytene chromosomes.  相似文献   

16.
Anopheles arabiensis strains reared from larvae and pupae collected from two different localities, Metehara and Melka-Worer, eastern Ethiopia, were evaluated against three insecticides. Resistance states of adult females were determined using the WHO test kits under field condition. The insecticides used were WHO discriminating doses of 4% DDT, 0.75% permethrin and 0.1% propoxur. The study revealed that 42.5% of the An. arabiensis population was resistant to DDT in Melka-Worer while only 30% of the species was resistant in Metehara to the same insecticide. In Metehara, 25% of An. arabiensis was also resistant to permethrin while the population was highly susceptible to the insecticide in Melka-Worer. Propoxur, which was not evaluated in Melka-Worer, was highly toxic to An. arabiensis in Metehara. The knocked-down time (KD50) for permethrin was 14.5 and 12.5 minutes in Metehara and Melka-Worer, respectively. The implications of these findings are discussed.  相似文献   

17.
Four species of the Anopheles gambiae complex were identified in Mozambique (East Africa) by chromosomal analysis. They were An. merus, An. gambiae s.s., An. arabiensis and An. quadriannulatus. An. merus was observed in coastal zones as well as in inner areas where the rivers are tidal and brackish and/or the soil is salty. An. gambiae s.s. is present in the central-northern regions (north of Save river) from the coast to the western mountains. On the coast it is often sympatric with An. merus. It is apparently absent south of Save river. An. arabiensis was observed in samples from the north-western hilly and mountainous areas, sympatrically with An. gambiae s.s., as well as south of Save river where often it is sympatric with An. merus. Only one specimen of An. quadriannulatus was observed. It was from a small sample collected feeding on bovid in a southern locality (Bela Vista-Maputo area). No inversion polymorphism was observed in the 446 An. merus identified. A quite low degree of inversion polymorphism was shown by both An. gambiae s.s. and An. arabiensis, involving 2Rb, 2La and 2Rb inversion systems respectively. By morphological analysis of cytogenetically identified samples of three species of the complex, number of sensilla coeloconica and palpal ratio were confirmed to be useful to distinguish An. merus from An. gambiae s.s./An. arabiensis. The overlapping areas between brackish and freshwater species become smaller when both characters are considered together, 1.5% and 3.5% being the probabilities of confusing An. merus with An. gambiae s.s. and An. arabiensis respectively.  相似文献   

18.
Abstract. Differential responses of the mosquitoes Anopheles arabiensis and An. gambiae sensu stricto to house-spraying with DDT or lambda-cyhalothrin were evaluated in relation to chromosomal inversion polymorphism, feeding and resting behaviour of these malaria vectors in Tanzania. Blood-fed mosquitoes from pit traps outdoors, exit traps on windows and indoor-resting catches were identified cytogenetically and the chromosomal inversion frequencies compared between samples and species. Their outdoor-resting behaviour was assessed by a mark–release–recapture experiment and by determining the proportion of freshly blood-fed individuals in exit traps. The source of bloodmeals was analysed by an ELISA method. Endophagic females of An. arabiensis were more likely than those of An. gambiae to exit from a house on the night of blood-feeding. Only in one out of three villages was there evidence that chromosomally distinct individuals within a species had different preferences for resting sites. There were indications, but not conclusive evidence, that mosquitoes caught indoors or outdoors had a tendency to return to the same type of resting site. In villages sprayed with either insecticide, the mean age of the vector populations was greatly reduced, compared with those in the unsprayed villages. An. arabiensis females exited from DDT sprayed houses after blood-feeding, whereas with lambda-cyhalothrin those exiting were mostly unfed and there was a decline in the human blood index. The excitorepellency of DDT was perceived as a disadvantage, whereas lambda-cyhalothrin apparently had more impact on malaria transmission by An. arabiensis.  相似文献   

19.
Anopheline larvae generally inhabit the near-surface of aquatic habitats, but they dive and remain at the bottom of these habitats for some time. This study examined forced and voluntary diving behavior and submergence tolerance in the three major African malaria vectors, Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles. The former two species occur sympatrically in temporal and shallow water bodies, while the latter occurs in permanent deeper water bodies. Anopheles funestus was the most tolerant of submergence, but the larvae tended to halt their descent before reaching the bottom by attaching onto a wall. The difference in diving behavior between An. funestus and the two species in the An. gambiae complex may be an adaptation to their contrasting breeding sites, because the former species must spend considerable energy to surface in its typical breeding sites. Both An. gambiae and An. arabiensis reached the bottom and crawled along the substrate, but An. gambiae voluntarily crawled more often than An. arabiensis. The possible importance of asymmetric bottom-feeding between these two sympatric species is discussed.  相似文献   

20.
We analysed by gas chromatography-mass spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID) the epicuticular lipid profiles of field females of the major Afro-tropical malaria vector, Anopheles gambiae. The samples were collected in three villages in Burkina Faso (West Africa), where An. gambiae M and S molecular forms and An. arabiensis live sympatrically. The aim was to compare the cuticular hydrocarbon (CHC) composition of individual field specimens of these three taxa, to highlight possible differences among them. All the samples analysed by GC-MS (55 individuals and eight pools) were characterized by the same 48 CHCs and 10 oxygenated compounds. The 19 most abundant CHCs were quantified in 174 specimens by GC-FID: quantitative intra-taxon differences were found between allopatric populations of both An. arabiensis and S-form. Inter-taxa quantitative differences in the relative abundances of some hydrocarbons between pairs of sympatric taxa were also found, which appear to be mainly linked to local situations, with the possible exception of diMeC(35) between An. arabiensis and S-form. Moreover, MeC(29) shows some degree of differentiation between S- and M-form in all three villages. Possible causes of these differences are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号