首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Mutations of MYO6 are associated with recessive deafness,DFNB37   总被引:10,自引:0,他引:10       下载免费PDF全文
Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37, our sequence analyses of MYO6 reveal a frameshift mutation (36-37insT), a nonsense mutation (R1166X), and a missense mutation (E216V). These mutations, along with a previously published missense allele linked to autosomal dominant progressive hearing loss (DFNA22), provide an allelic spectrum that probes the relationship between myosin VI dysfunction and the resulting phenotype.  相似文献   

2.
In a large consanguineous Palestinian kindred, we previously mapped DFNB28--a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment--to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious missense mutation (G1019R) occurs in a conserved motif in a putative SH3-binding domain. In seven families, 27 deaf individuals are homozygous for one of the nonsense mutations; in two other families, 3 deaf individuals are compound heterozygous for the two nonsense mutations or for Q581X and G1019R. The novel long isoform of TRIOBP has a restricted expression profile, including cochlea, retina, and fetal brain, whereas the original short isoform is widely expressed. Antibodies to TRIOBP reveal expression in sensory cells of the inner ear and colocalization with F-actin along the length of the stereocilia.  相似文献   

3.
XU, WEIZHEN, DANIELLE R REED, YUAN DING AND R ARLEN PRICE. Absence of linkage between human obesity and the mouse agouti homologous region (20q11.2) or other markers spanning chromosome 20q. Obes Res. Mutant alleles of the agouti gene cause obesity in the mouse and the homologous gene in humans has been mapped to chromosome 20q11.2. An allelic variant of the agouti gene could account for obesity in humans and we tested this hypothesis by genotyping 210 sibling pairs from 45 families segregating an obesity phenotype. Using sibling pair linear regression analysis, evidence for linkage between obesity and markers flanking the agouti locus and other markers spanning chromosome 20q was assessed. We found no correlation between identity-by-descent at these markers and obesity differences within pairs. In the mouse, obesity caused by mutations of the agouti gene develops later in life, so a subset of families with adult-onset obesity were also tested for linkage, with negative results. Although it is not possible to exclude alleles of the agouti gene as a contributor to obesity in humans, the absence of positive linkage in this study suggests that either the agouti gene has small effects or the allele frequency is low.  相似文献   

4.
Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.Marie Wattenhofer and Nilüfer Sahin-Calapoglu contributed equally to this work  相似文献   

5.
Mutations in the unconventional myosin VI gene, Myo6, are associated with deafness and vestibular dysfunction in the Snell's waltzer (sv) mouse. The corresponding human gene, MYO6, is located on chromosome 6q13. We describe the mapping of a new deafness locus, DFNA22, on chromosome 6q13 in a family affected by a nonsyndromic dominant form of deafness (NSAD), and the subsequent identification of a missense mutation in the MYO6 gene in all members of the family with hearing loss.  相似文献   

6.
Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3–11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Chromosome 13q has been suggested as the site of a gene predisposing to human breast cancer, because loss of heterozygosity of alleles on this chromosome has been observed in some ductal breast tumors and because two breast cancer lines are altered at the retinoblastoma gene (RB1) at 13q14. To test this possibility, linkage of breast cancer susceptibility to 14 loci on chromosome 13q loci was assessed in extended families in which breast cancer is apparently inherited as an autosomal dominant trait. RB1 was excluded as the site of a breast cancer gene by a lod score of Z = -7.60 at close linkage for 13 families. Multipoint analysis yielded negative lod scores throughout the region between 13q12 and 13q34; over most of this distance, Z less than -2.0. Therefore, chromosome 13q appears to be excluded as the site of primary lesion for breast cancer in these families. In addition, comparison of tumor versus normal tissues of nonfamilial breast cancer patients revealed an alteration at the 5' end of RB1 in a mucoid carcinoma but no alterations of RB1 in five informative ductal adenocarcinomas. Linkage data and comparisons of tumor and normal tissues suggest that changes in the RBI locus either are secondary alterations associated with progression of some tumors or occur by chance.  相似文献   

8.
The activin receptor-like kinase 1 gene (ALK-1) is the second locus for the autosomal dominant vascular disease hereditary hemorrhagic telangiectasia (HHT). In this paper we present the genomic structure of the ALK-1 gene, a type I serine-threonine kinase receptor expressed predominantly in endothelial cells. The coding region is contained within nine exons, spanning < 15 kb of genomic DNA. All introns follow the GT-AG rule, except for intron 6, which has a TAG/gcaag 5' splice junction. The positions of introns in the intracellular domain are almost identical to those of the mouse serine-threonine kinase receptor TSK-7L. By sequencing ALK-1 from genomic DNA, mutations were found in six of six families with HHT either shown to link to chromosome 12q13 or in which linkage of HHT to chromosome 9q33 had been excluded. Mutations were also found in three of six patients from families in which available linkage data were insufficient to allow certainty with regard to the locus involved. The high rate of detection of mutations by genomic sequencing of ALK-1 suggests that this will be a useful diagnostic test for HHT2, particularly where preliminary linkage to chromosome 12q13 can be established. In two cases in which premature termination codons were found in genomic DNA, the mutant mRNA was either not present or present at barely detectable levels. These data suggest that mutations in ALK-1 are functionally null alleles.  相似文献   

9.
Autosomal dominant myotonia congenita and autosomal recessive generalized myotonia (GM) are genetic disorders characterized by the symptom of myotonia, which is based on an electrical instability of the muscle fiber membrane. Recently, these two phenotypes have been associated with mutations in the major muscle chloride channel gene CLCN1 on human chromosome 7q35. We have systematically screened the open reading frame of the CLCN1 gene for mutations by SSC analysis (SSCA) in a panel of 24 families and 17 single unrelated patients with human myotonia. By direct sequencing of aberrant SSCA conformers were revealed 15 different mutations in a total of 18 unrelated families and 13 single patients. Of these, 10 were novel (7 missense mutations, 2 mutations leading to frameshift, and 1 mutation predicted to affect normal splicing). In our overall sample of 94 GM chromosomes we were able to detect 48 (51%) mutant GM alleles. Three mutations (F413C), R894X, and a 14-bp deletion in exon 13) account for 32% of the GM chromosomes in the German population. Our finding that A437T is probably a polymorphism is in contrast to a recent report that the recessive phenotype GM is associated with this amino acid change. We also demonstrate that the R894X mutation may act as a recessive or a dominant mutation in the CLCN1 gene, probably depending on the genetic background. Functional expression of the R894X mutant in Xenopus oocytes revealed a large reduction, but not complete abolition, of chloride currents. Further, it had a weak dominant negative effect on wild-type currents in coexpression studies. Reduction of currents predicted for heterozygous carriers are close to the borderline value, which is sufficient to elicit myotonia.  相似文献   

10.
Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. We initially assigned the CLD locus by linkage and linkage disequilibrium on 2q21 in 19 Finnish families. Here we report the molecular background of CLD via characterization of five distinct mutations in the coding region of the lactase (LCT) gene. Twenty-seven patients out of 32 (84%) were homozygous for a nonsense mutation, c.4170T-->A (Y1390X), designated "Fin(major)." Four rare mutations--two that result in a predicted frameshift and early truncation at S1666fsX1722 and S218fsX224 and two point mutations that result in substitutions Q268H and G1363S of the 1,927-aa polypeptide--confirmed the lactase mutations as causative for CLD. These findings facilitate genetic testing in clinical practice and enable genetic counseling for this severe disease. Further, our data demonstrate that, in contrast to common adult-type hypolactasia (lactose intolerance) caused by a variant of the regulatory element, the severe infancy form represents the outcome of mutations affecting the structure of the protein inactivating the enzyme.  相似文献   

11.
Parkinson disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity, and postural instability, as well as by a clinically significant response to treatment with levodopa. Mutations in the alpha-synuclein gene have been found to result in autosomal dominant PD, and mutations in the parkin gene produce autosomal recessive juvenile-onset PD. We have studied 203 sibling pairs with PD who were evaluated by a rigorous neurological assessment based on (a) inclusion criteria consisting of clinical features highly associated with autopsy-confirmed PD and (b) exclusion criteria highly associated with other, non-PD pathological diagnoses. Families with positive LOD scores for a marker in an intron of the parkin gene were prioritized for parkin-gene testing, and mutations in the parkin gene were identified in 22 families. To reduce genetic heterogeneity, these families were not included in subsequent genome-screen analysis. Thus, a total of 160 multiplex families without evidence of a parkin mutation were used in multipoint nonparametric linkage analysis to identify PD-susceptibility genes. Two models of PD affection status were considered: model I included only those individuals with a more stringent diagnosis of verified PD (96 sibling pairs from 90 families), whereas model II included all examined individuals as affected, regardless of their final diagnostic classification (170 sibling pairs from 160 families). Under model I, the highest LOD scores were observed on chromosome X (LOD score 2.1) and on chromosome 2 (LOD score 1.9). Analyses performed with all available sibling pairs (model II) found even greater evidence of linkage to chromosome X (LOD score 2.7) and to chromosome 2 (LOD score 2.5). Evidence of linkage was also found to chromosomes 4, 5, and 13 (LOD scores >1.5). Our findings are consistent with those of other linkage studies that have reported linkage to chromosomes 5 and X.  相似文献   

12.
We performed linkage analysis in a Belgian family with autosomal dominant midfrequency hearing loss, which has a prelingual onset and a nonprogressive course in most patients. We found LOD scores >6 with markers on chromosome 11q. Analysis of key recombinants maps this deafness gene (DFNA12) to a 36-cM interval on chromosome 11q22-24, between markers D11S4120 and D11S912. The critical regions for the recessive deafness locus DFNB2 and the dominant locus DFNA11, which were previously localized to the long arm of chromosome 11, do not overlap with the candidate interval of DFNA12.  相似文献   

13.
Shi YR  Wu JY  Hsu YA  Lee CC  Tsai CH  Tsai FJ 《Genetic testing》2002,6(3):237-243
Hereditary multiple exostoses (HME) is an autosomal dominant disorder characterized by growth of benign bone tumors. This genetically heterozygous disease comprises three chromosomal loci: the EXT1 gene on chromosome 8q23-q24, EXT2 on 11p11-p13, and EXT3 on 19p. Both EXT1 and EXT2 have been cloned and defined as a new family of potential tumor suppressor genes in previous work. However, no studies have been conducted in the Taiwanese population. To determine if previous results can also be applied to the Taiwanese, we analyzed 5 Taiwanese probands with clinical features of HME: 1 of them is a sporadic case, and the others are familial cases. Linkage studies were performed in the familial cases before the mutation analysis to determine to which of the three EXT chromosomes these cases could be assigned. Our results showed that one proband is linked to the EXT1 locus and three are linked to the EXT2 locus; the sporadic case was subsequently found to involve EXT1. We then identified four new mutations that have not been found in other races: two in EXT1--frameshift (K218fsX247) and nonsense (Y468X) mutations and two in EXT2-missense (R223P) and nonsense (Y394X) mutations. Our results indicate that in familial cases, linkage analysis can prove useful for preimplantation genetic diagnosis.  相似文献   

14.
Several groups have reported evidence suggesting linkage of bipolar affective disorder (BPAD) to chromosome 18. We have reported data from 28 pedigrees that showed linkage to marker loci on 18p and to loci 40 cM distant on 18q. Most of the linkage evidence derived from families with affected phenotypes in only the paternal lineage and from marker alleles transmitted on the paternal chromosome. We now report results from a series of 30 new pedigrees (259 individuals) genotyped for 13 polymorphic markers spanning chromosome 18. Subjects were interviewed by a psychiatrist and were diagnosed by highly reliable methods. Genotypes were generated with automated technology and were scored blind to phenotype. Affected sib pairs showed excess allele sharing at the 18q markers D18S541 and D18S38. A parent-of-origin effect was observed, but it was not consistently paternal. No robust evidence of linkage was detected for markers elsewhere on chromosome 18. Multipoint nonparametric linkage analysis in the new sample combined with the original sample of families supports linkage on chromosome 18q, but the susceptibility gene is not well localized.  相似文献   

15.
Genetic studies have revealed that 25 to 30% of autosomal dominant retinitis pigmentosa (adRP) families have mutations in the rhodopsin gene, while the remainder do not. More recently linkage data and mutation detection have demonstrated two further loci implicated in adRP, at an as yet unidentified gene on chromosome 8p and at the human gene homologue of the mouse Rds (Retinal Degeneration Slow) gene on chromosome 6p. We have previously reported exclusion of adRP from the rhodopsin locus on 3q in two large adRP families. We now report exclusion data for both families, on chromosomes 6 and 8, demonstrating that the adRP phenotype results from mutations in at least four locations.  相似文献   

16.
Summary
In situ hybridization analyses were conducted on porcine metaphase chromosomes using porcine liver albumin (ALB) and transferrin (TF) cDNA probes. The ALB gene was assigned to the q12 band of chromosome 8 and the TF gene to the q31 band of chromosome 13. For the latter, a statistically significant secondary peak was observed on the 6p15 band. However, the TF probe predominantly hybridized to the 13q31 band, indicating that this band is the most likely site of the TF gene. Since the TF gene belongs to linkage group V, this linkage group can now be assigned to chromosome 13. The TF and ALB probes were also used for restriction fragment length polymorphism (RFLP) analysis. A screening of 10 unrelated animals revealed Tag I RFLPs for both ALB and TF. Family studies indicated that the ALB and TF polymorphisms were controlled by three and two alleles, respectively.  相似文献   

17.
Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder that affects both the retina and vitreous body. Autosomal recessive FEVR was diagnosed in multiple individuals from three consanguineous families of European descent. A candidate-locus-directed genome scan shows linkage to the region on chromosome 11q flanked by markers D11S905 and D11S1314. The maximum LOD score of 3.6 at theta =0 is obtained with marker D11S987. Haplotype analysis confirms that the critical region is the 22-cM (311-Mb) interval flanked by markers D11S905 and D11S1314. This region contains LRP5 but not FZD4; mutations in both of these genes cause autosomal dominant FEVR. Sequencing of LRP5 shows, in all three families, homozygous mutations R570Q, R752G, and E1367K. This suggests that mutations in this gene can cause autosomal recessive as well as autosomal dominant FEVR.  相似文献   

18.
We have studied the segregation of an RFLP detected with a human ETS-1 genomic probe in 25 families containing members affected with ataxia-telangiectasia (AT) and in 27 families from the Centre d'Etude du Polymorphisme Humain (CEPH) panel. We have recently mapped a gene for AT to 11q22-23 by linkage to the markers THY1 and D11S144. Multipoint linkage analysis of the CEPH families indicated that ETS-1 is located on chromosome 11q approximately 19.2 centimorgans telomeric to THY1. Analysis of the segregation of ETS-1 alleles in AT families yields strongly negative LOD scores, excluding an AT gene from a region extending 15 cM to either side of ETS-1. Multipoint mapping of ETS-1, D11S144, THY1, and AT also excludes the possibility that an AT gene is telomeric to ETS-1.  相似文献   

19.
20.
Chromosome 22 contains two potential schizophrenia loci on chromosomal regions 22q11.2 and 22q12–13. In the present study we report results from linkage mapping of the gene coding for the human A2a adenosine receptor (AR), which is one of two receptors mediating central nervous system effects of adenosine. From seven CEPH (Centre d’Etude du Polymorphisme Humain) families, 120 individuals were typed utilizing an intragenic restriction fragment length polymorphism. Significant linkage was found with many markers on chromosome 22. A 10-cM 1000 :1 support interval between markers D22S301 and D22S300 is defined on the CHLC (Cooperative Human Linkage Center) framework map of chromosome 22. Localization of the A2aAR gene outside the CATCH 22 syndrome region on 22q11.2 is demonstrated by the observation of heterozygous individuals with defined 2-Mb deletions from this region. Thus, the A2aAR gene is not the schizophrenia susceptibility gene suspected in the CATCH 22 syndrome region on 22q11.2, but remains a candidate for a schizophrenia susceptibility gene on 22q12–13. Received: 10 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号