首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
Previous results indicate extensive similarity of the active site regions of thrombin (EC 3.4.21.5) and Thrombin Quick, a congenital dysthrombin. A binding defect of Thrombin Quick toward fibrinogen is indicated by an increased KI when fibrinogen is present as a competitive inhibitor in the hydrolysis of tosyl-Gly-Pro-Arg-p-nitroanilide. In the present study, Thrombin Quick I is shown to have an activity of 1.3 and 34%, respectively, toward fibrinogen and prothrombin. Like the activity observed in prothrombin hydrolysis, Thrombin Quick I was 30% as effective as thrombin in stimulating release of thromboxane from platelets. Thrombin Quick was 1.7 and 2.4%, as effective as thrombin in stimulating platelet aggregation and prostacyclin production, respectively. Based on the activity of Thrombin Quick I in the reactions investigated, it is concluded that 1) the three cellular responses studied are initiated by proteolytic action of thrombin, 2) thrombin stimulation of aggregation and thromboxane release from platelets occurs via two different receptors, 3) the thrombin cellular interaction resulting in platelet aggregation and prostacyclin release must involve the thrombin active site as well as a secondary binding site required for optimal interaction with fibrinogen, and 4) the release of thromboxane from platelets does not involve the interaction of thrombin at the extrinsic binding site.  相似文献   

2.
The dysthrombin, Thrombin Quick, is chromatographically separable into two components designated Thrombin Quick I and Thrombin Quick II. Thrombin Quick II lacks observable catalytic activity toward thrombin substrates. The steady-state kinetics of hydrolysis of benzoylarginine ethyl ester and Tos-Gly-Pro-Arg-p-nitroanilide by Thrombin Quick I are equivalent to those of thrombin. These results, in addition to binding studies with the active site titrant N2-(5-dimethylaminonaphthalene-1-sulfonyl)arginine N-(3-ethyl-1,5-pentanediyl)amide, indicate that binding interactions at the catalytic site of Thrombin Quick I are unaltered. Thrombin Quick I is inhibited by anti-thrombin III at the same rate as thrombin. Steady-state kinetic parameters for the release of fibrinopeptide A indicate defects in both kcat and Km for Thrombin Quick I with kcat/Km equal to 0.012 of the value for thrombin, corresponding to the relative fibrinogen clotting activity of 0.013. The results are interpreted as indicating a defect in Thrombin Quick I at a binding site, external to the catalytic site, which is essential for determining specificity toward fibrinogen. The defect in kcat may result secondarily from small perturbations in the steric relationship of the catalytic triad residues. The rate of hydrolysis by Thrombin Quick I of the protein substrates bovine prothrombin and bovine protein C (in the absence of cofactors) is about one-third of that observed for thrombin, indicating that hydrolysis of these substrates by thrombin involves different specificity determinants than does the hydrolysis of fibrinogen.  相似文献   

3.
Platelet responses to compound interactions with thrombin.   总被引:1,自引:0,他引:1  
R D Smith  W G Owen 《Biochemistry》1999,38(28):8936-8947
Catalytic and noncatalytic interactions of thrombin with platelets are investigated with use of thrombin variants with altered specificities and with ligands of thrombin receptors on platelets. Both alpha-thrombin and weakly coagulant meizothrombin-des-fragment-1 (mu-thrombin) hydrolyze proteolytically activated receptor 1 for thrombin (rPAR1(T), recombinant) with catalytic efficiencies of >10(7) M(-)(1) s(-)(1), whereas rPAR1(T) is not a substrate for weakly coagulant beta-thrombin. In contrast, both mu-thrombin and beta-thrombin are weak agonists of platelet dense body (ATP) secretion. Antibodies that block rPAR1(T) cleavage strongly inhibit the secretory reaction to alpha- and mu-thrombins but not to beta-thrombin or to thrombin receptor activating peptide (TRAP). However, catalytically inactive FPR-thrombin, which binds glycoprotein Ib but does not inhibit rPAR1(T) cleavage, inhibits responses to TRAP as well as those to alpha- and mu-thrombins, which indicates that binding of the inactive enzyme to platelets influences the function of PAR1(T). An antibody that inhibits binding of thrombin to platelet glycoprotein Ib inhibits secretory responses to thrombin but not to TRAP, so occupancy of glycoprotein Ib per se accounts for only part of the attenuation. All three thrombins stimulate a rise in cytosolic Ca(II), and the dose response to beta-thrombin is congruent with that for ATP secretion. However, the response of cytosolic Ca(II) is 10-100 times more sensitive to mu-thrombin and alpha-thrombin than ATP secretion is, and is inhibited by neither anti-PAR1(T) Ig nor FPR-thrombin. Thus, alpha-thrombin appears to have an activity not shared by either mu- or beta-thrombins. This activity is owed to more than coupling of independent signals from cleavage of two proteolytically activated receptors, as there is no synergism when mu-thrombin and beta-thrombin costimulate secretion. It is concluded either that alpha-thrombin has a third interaction site on platelets with which neither mu-thrombin nor beta-thrombin interacts or that dual receptors are coordinately cleaved. In either case, the strong secretory response to thrombin appears to be moderated, independently of cytosolic Ca(II), by occupancy of a noncatalytic interaction site such as glycoprotein Ib.  相似文献   

4.
R A Henriksen  K G Mann 《Biochemistry》1989,28(5):2078-2082
Thrombin Quick II is one of two dysfunctional forms of thrombin derived from the previously described congenital dysprothrombin prothrombin Quick. Thrombin Quick II does not clot fibrinogen, hydrolyze p-nitroanilide substrates of thrombin, or bind N2-[5-(dimethylamino)naphthalene-1-sulfonyl]arginine N,N-(3-ethyl-1,5-pentanediyl)amide, a high-affinity competitive inhibitor of thrombin. To determine the structural alteration in thrombin Quick II, the reduced, carboxymethylated protein was hydrolyzed by a lysyl endopeptidase. A peptide not present in a parallel thrombin hydrolysate was identified by reverse-phase chromatography. The peptide was purified by rechromatography and subjected to Edman degradation which showed that Gly-558 of human prothrombin had been replaced by Val. This corresponds to a point mutation of the Gly codon GGC to GUC. This Gly residue, which is highly conserved in the chymotrypsin family of serine proteases, forms part of the substrate binding pocket for bulky aromatic and basic side chains in chymotrypsin and trypsin, respectively. However, in porcine elastase 1, the corresponding residue is threonine. Consistent with the identified structural alteration, thrombin Quick II incorporates [3H]diisopropyl fluorophosphate stoichiometrically and hydrolyzes the elastase substrate succinyl-Ala-Ala-Pro-Leu-p-nitroanilide with a relative kcat/KM of 0.14 when compared to thrombin. This results from a 3-fold increase in KM and a 2.5-fold decrease in kcat for thrombin Quick II when compared to thrombin acting on the same substrate. These results and those of other investigators studying mutant trypsins support the conclusion that the catalytic activity of serine proteases is very sensitive to structural alterations in the primary substrate binding pocket.  相似文献   

5.
The kininogens, high molecular weight kininogen (HK) and low molecular weight kininogen (LK), are multifunctional, single-gene products that contain bradykinin and identical amino-terminal heavy chains. Studies were performed to determine if LK would bind directly to platelets. 125I-LK specifically bound to gel-filtered platelets in the presence of 50 microM Zn2+. HK effectively competed with 125I-LK for the same binding site (Ki = 27 +/- 9 nM, n = 5). Similarly, the Ki for LK inhibition of 125I-LK binding was 12 +/- 1 nM (n = 3). Albumin, fibrinogen, factor XIII, and kallikrein did not inhibit 125I-LK binding to unstimulated platelets. 125I-LK (66 kDa) was not cleaved upon binding to platelets. The binding of 125I-LK to unstimulated platelets was found to be fully reversible by the addition of a 50 molar excess of unlabeled LK at both 10 and 20 min. LK binding to platelets was saturable with an apparent Kd of 27 +/- 2 nM (mean +/- S.E., n = 9) and 647 +/- 147 binding sites/platelet. Both LK and HK at plasma concentrations inhibited thrombin-induced platelet aggregation. LK and HK at about 5% of plasma concentration also inhibited thrombin-induced secretion of both stirred and unstirred platelets. Both kininogens were found to be noncompetitive inhibitors of proteolytically active thrombin binding to platelets. The kininogens did not inhibit D-phenylalanyl-prolyl-arginine chloromethyl ketone-treated thrombin from binding to platelets. These studies indicated that both kininogens have a region on their heavy chain which allows them to bind to platelets. Further, kininogen binding by its heavy chain modulates thrombin activation of platelets since it prevents proteolytically active thrombin from binding to its receptor.  相似文献   

6.
We have obtained evidence that selective inhibition of high affinity thrombin-binding sites located in the amino-terminal domain of the membrane glycoprotein (GP) Ib alpha results in impaired platelet activation, as shown by abrogation or reduction of the following responses induced in normal platelets by exposure to less than 1 nM alpha-thrombin: (i) increase in intracellular ionized calcium concentration ([Ca2+]i), (ii) release of dense granule content, (iii) binding of fibrinogen, (iv) aggregation. An anti-GP Ib monoclonal antibody, LJ-Ib 10, which does not inhibit von Willebrand factor binding to platelets, obliterated the high affinity alpha-thrombin-binding sites on normal platelets. Isotherms of alpha-thrombin binding to normal platelets treated with saturating amounts of the antibody were virtually identical to those obtained with platelets from a patient with classical Bernard-Soulier syndrome. In parallel with decreased binding of the agonist, this antibody caused 50% inhibition of the maximal extent of platelet aggregation and 90% inhibition of ATP release induced by 0.3 nM alpha-thrombin. By inhibiting alpha-thrombin binding to GP Ib, the antibody prevented the activation of platelets exposed to low concentrations of the agonist, as demonstrated by abrogation of the increase in intraplatelet ionized calcium concentration induced in control platelets by 0.18 nM alpha-thrombin; under these conditions, fibrinogen binding was inhibited by 84%. Therefore, there is a correlation between occupancy of the high affinity sites for alpha-thrombin on GP Ib alpha and platelet activation, secretion, and aggregation, suggesting that GP Ib alpha is part of an alpha-thrombin receptor relevant for platelet function.  相似文献   

7.
R A Henriksen  K G Mann 《Biochemistry》1988,27(26):9160-9165
A congenitally dysfunctional form of prothrombin, prothrombin Quick, was isolated from the plasma of an individual with less than 2% of normal prothrombin activity. Following activation of prothrombin Quick, two dysfunctional thrombins, thrombin Quick I and thrombin Quick II, were isolated. Functional characterization of thrombin Quick I indicated an increase in KM and a decrease in kcat, relative to thrombin, for release of fibrinopeptide A. Comparison of kcat/KM for thrombin Quick I to the value obtained for thrombin yielded a relative catalytic efficiency of 0.012 for thrombin Quick I [Henriksen, R. A., & Owen, W. G. (1987) J. Biol. Chem. 262, 4664-4669]. Lysyl endopeptidase digestor of reduced and S-carboxymethylated thrombin and thrombin Quick I has resulted in the identification of an altered peptide in this dysthrombin. Edman degradation of the isolated peptide has shown that the altered residue in this protein is Arg-382 which is replaced by Cys. This could result from a point mutation in the Arg codon, CGC, to yield TGC. Together, these results indicate that Arg-382 is a critical residue in determining the specificity of thrombin toward fibrinogen. Similar relative activities for thrombin Quick I in stimulating platelet aggregation, in the release of prostacyclin from human umbilical vein endothelium, and in the release of fibrinopeptide A suggest that these activities of thrombin share the same specificity determinants.  相似文献   

8.
Thrombin interaction with platelets. Influence of a platelet protease nexin   总被引:3,自引:0,他引:3  
A fraction of the 125I-thrombin that binds to human platelets is taken into a sodium dodecyl sulfate-resistant 77 kDa complex with a platelet factor (Bennett, W. F., and Glenn, K. C. (1980) Cell 22, 621-627). Here we show that this platelet factor is in several respects similar to protease nexin I (PNI), a fibroblast thrombin inhibitor. The complexes are of the appropriate size, bind to Sepharose that has been derivatized with anti-PNI antibody, do not form when the thrombin active site has been blocked with diisopropylphosphofluoridate, and do not appear on platelets when heparin is present. However, the platelet factor does not bind urokinase, indicating that this "platelet PN" may be distinct from PNI. Following brief incubation with 125I-thrombin, platelet PN X 125I X thrombin complexes are found both associated with the platelets and free in the binding medium. 125I-Thrombin has a higher affinity for platelet PN than for platelet receptors. In 30-s binding incubations carried out with thrombin at concentrations below 0.3 nM, formation of the 77-kDa complex accounts for most of the platelet specific binding of 125I-thrombin. Subtracting this large contribution to 125I-thrombin-specific binding reveals that the reversible binding of 125I-thrombin to platelet receptors exhibits sigmoidal thrombin dose-dependence. Thrombin stimulation of platelet [14C]serotonin release exhibits similar thrombin dose dependence. These results indicate that platelets may possess a mechanism for suppressing their interaction with active thrombin at thrombin doses below 0.3 nM. It is possible that platelet PN carries out this function by capturing thrombin before thrombin binds to its signal-transmitting receptors.  相似文献   

9.
Ahmad SS  Walsh PN 《Biochemistry》2002,41(37):11269-11276
The assembly of the factor X activating complex on the platelet surface requires the occupancy of three receptors: (1) enzyme factor IXa, (2) cofactor factor VIII(a), and (3) substrate factor X. To further evaluate this three-receptor model, simultaneous binding isotherms of (125)I-factor X and (131)I-factor VIII(a) to activated platelets were determined as a function of time and also as a function of the concentrations of both ligands in the presence of active site-inhibited factor IXa (45 nM) and 5 mM CaCl(2). In the presence of active site-inhibited factor IXa and factor VIIIa there are two independent factor X binding sites: (1) low affinity, high capacity (approximately 9000 sites/platelet; K(d) approximately 380 nM) and (2) low capacity, high affinity (1700 sites/platelet; K(d) approximately 30 nM). A single specific and selective factor X binding site was expressed (1200 sites/platelet; K(d) approximately 9 nM) when the shared factor X/factor II site was blocked by excess factor II (4 microM). In the presence of active site-inhibited factor IXa (4 nM) and factor II (4 microM), factor X binds to 3-fold more platelet sites than procofactor VIII with relatively low affinity (K(d) approximately 250 nM). The activation of procofactor VIII to factor VIIIa increases the affinity of binding to platelets of both factor VIIIa ( approximately 4-fold to K(d) approximately 0.8-1.5 nM) and factor X ( approximately 25-50-fold to K(d) approximately 5-9 nM). In the presence of excess zymogen factor IX, which blocks the shared factor IX/factor IXa binding site, the substrate, factor X, and the active cofactor, factor VIIIa, form a 1:1 stoichiometric complex. These coordinate binding studies support the conclusion that factor X initially binds to a high-capacity, low-affinity platelet binding site shared with prothrombin, which then presents factor X to a specific high-affinity site consisting of factor VIIIa bound to a high-affinity, low-capacity receptor on activated platelets.  相似文献   

10.
Inhibition of the thrombin-platelet reactions by DuP 714   总被引:1,自引:0,他引:1  
The efficacy and specificity of a novel synthetic thrombin inhibitor, DuP 714, on thrombin-induced elevation of cytoplasmic calcium, fibrinogen binding and aggregation in human platelets were examined. Thrombin (0.5 U/ml) stimulated an increase in [125I]fibrinogen binding in gel-filtered platelets which was blocked by DuP 714 with an IC50 value of 2 nM. Thrombin (1 U/ml)-induced elevation of intracellular [Ca2+]i was also blocked by DuP 714 with an IC50 value of 67 nM. A much higher concentration of thrombin (25 U/ml) was used to stimulate aggregation with heparinized platelet-rich plasma. Under these conditions, micromolar concentrations of DuP 714 were needed to inhibit thrombin. In all of these preparations, DuP 714 at concentrations as high as 10(-5) M had no intrinsic effects and did not affect the responses induced by arachidonate, ADP, collagen, epinephrine, vasopressin and serotonin. These data indicate that DuP 714 is a potent and specific thrombin inhibitor capable of arresting the actions of thrombin on human fibrin formation and platelet aggregation and secretion. It may serve as a potential antithrombotic agent for various forms of thrombotic disorders.  相似文献   

11.
Family members heterozygous for the congenitally abnormal fibrinogen designated fibrinogen Manchester, A alpha 16Arg----His, have previously been shown by h.p.l.c. and amino acid analysis to release a variant fibrinopeptide, [His16]fibrinopeptide A, from plasma fibrinogen after the addition of thrombin. The present study was designed to determine if the same abnormal phenotype was also present in the intraplatelet fibrinogen pool. Fresh platelets were washed in buffers containing EDTA until it could be shown that all washable plasma fibrinogen was removed. Normal platelets were then lysed by freezing and thawing to release their intracellular proteins, which were then treated with thrombin. The fibrinopeptides, cleaved from the intraplatelet fibrinogen, could be detected by an optimized h.p.l.c. technique. Quantification of the intraplatelet fibrinogen gave a result (means +/- S.D., n = 5) of 110 +/- 30 and 90 +/- 30 micrograms/10(9) platelets, when determined by h.p.l.c. quantification of fibrinopeptide B content and fibrinogen fragment E radioimmunoassay respectively. Examination of fibrinopeptides released from the platelet fibrinogen from the family with fibrinogen Manchester with the same techniques showed elution peaks in the same positions as both [His16]fibrinopeptide A and normal fibrinopeptide A. The identity of these peaks was further substantiated by analysis of the h.p.l.c. peaks by using specific radioimmunoassay to fibrinopeptide A. Our results therefore demonstrate that platelet fibrinogen expresses the heterozygous A alpha 16His phenotype. This supports the view that the A alpha chains of platelet and plasma fibrinogen are produced from a single genetic locus.  相似文献   

12.
Proteins of the annexin/lipocortin family act as in vitro anticoagulants by binding to anionic phospholipid vesicles. In this study, we investigated whether annexin V (placental anticoagulant protein I) would bind to human platelets. Annexin V bound to unstimulated platelets in a reversible, calcium-dependent reaction with an apparent Kd of 7 nM and 5000-8000 sites/platelet. Additional binding sites could be induced by several platelet agonists in the following order of effectiveness: A23187 greater than collagen + thrombin greater than collagen greater than thrombin. However, neither ADP nor epinephrine induced additional binding sites. Three other proteins of the annexin family (annexins II, III, and IV) competed for annexin V platelets binding sites with the same relative potencies previously observed for binding to phospholipid vesicles. Phospholipid vesicles containing phosphatidylserine completely inhibited binding of annexin V to platelets. Annexin V completely blocked binding of 125I-factor Xa to thrombin-stimulated platelets. These results support the hypothesis that phosphatidylserine exposure occurs during platelet activation and may be necessary for assembly of the prothrombinase complex on platelet membranes.  相似文献   

13.
The functional sizes of the binding sites for thrombin on human platelets and isolated membranes have been determined by the technique of radiation inactivation: similar results were obtained. Independent studies using different radiation doses (0, 3, and 48 Mrad) and different thrombin concentrations (10(-10), 10(-8), and 10(-6) M) confirmed the presence of three binding sites with functional sizes of 900 000, 30 000, and 4000 daltons. The binding site of lowest apparent size (4000 daltons) probably corresponds to what has been termed nonspecific binding since its dissociation constant (2900 nM) is well outside the physiological range. The site of intermediate size (30 000 daltons) is also probably not involved in platelet activation since its dissociation constant (11 nM) is also beyond the concentration range required for activation, although it may be involved in other aspects of platelet-thrombin interaction. The sites with the largest functional size are probably important in platelet function since their dissociation constant (0.3 nM) is in the range required for platelet activation. The functional size of these sites (900 000 daltons) suggests that the high-affinity site for thrombin binding to platelets may involve a multimolecular complex of membrane components.  相似文献   

14.
Miller TN  Sinha D  Baird TR  Walsh PN 《Biochemistry》2007,46(50):14450-14460
The zymogen, factor XI, and the enzyme, factor XIa, interact specifically with functional receptors on the surface of activated platelets. These studies were initiated to identify the molecular subdomain within factor XIa that binds to activated platelets. Both factor XIa (Ki approximately 1.4 nM) and a chimeric factor XIa containing the Apple 3 domain of prekallikrein (Ki approximately 2.7 nM) competed with [125I]factor XIa for binding sites on activated platelets, suggesting that the factor XIa binding site for platelets is not located in the Apple 3 domain which mediates factor XI binding to platelets. The recombinant catalytic domain (Ile370-Val607) inhibited the binding of [125I]factor XIa to the platelets (Ki approximately 3.5 nM), whereas the recombinant factor XI heavy chain did not, demonstrating that the platelet binding site is located in the light chain of factor XIa. A conformationally constrained cyclic peptide (Cys527-Cys542) containing a high-affinity (KD approximately 86 nM) heparin-binding site within the catalytic domain of factor XIa also displaced [125I]factor XIa from the surface of activated platelets (Ki approximately 5.8 nM), whereas a scrambled peptide of identical composition was without effect, suggesting that the binding site in factor XIa that interacts with the platelet surface resides in the catalytic domain near the heparin binding site of factor XIa. These data support the conclusion that a conformational transition accompanies conversion of factor XI to factor XIa that conceals the Apple 3 domain factor XI (zymogen) platelet binding site and exposes the factor XIa (enzyme) platelet binding site within the catalytic domain possibly comprising residues Cys527-Cys542.  相似文献   

15.
The interaction of hirudin with the dysfunctional enzymes thrombin Quick I and II has been investigated. Natural and recombinant hirudin caused nonlinear competitive inhibition of thrombin Quick I. The results were consistent with thrombin Quick I existing in two forms that have different affinities for hirudin. The affinities of these forms for natural hirudin were respectively 10(4)- and 10(6)-fold lower than that of alpha-thrombin. In contrast, truncated hirudin molecules lacking the C-terminal tail of the molecule caused linear inhibition of thrombin Quick I. These results indicate that different modes of interaction of the two forms of thrombin Quick I with the C-terminal tail of hirudin were the cause of the nonlinear inhibition. Comparison of the dissociation constants of thrombin Quick I with the truncated and full-length forms of hirudin suggested that the interactions that normally occur between the C-terminal tail of hirudin and thrombin were completely disrupted with the low-affinity form of thrombin Quick I. Thrombin Quick II displayed an affinity for natural hirudin that was 10(3)-fold lower than that observed with alpha-thrombin. In contrast, it bound a mutant hirudin with altered N-terminal amino acids only 16-fold less tightly. These results are discussed in terms of structural alterations in the active-site cleft in thrombin Quick II.  相似文献   

16.
J T Harmon  G A Jamieson 《Biochemistry》1988,27(6):2151-2157
The receptor status of the moderate-affinity platelet binding site for alpha-thrombin has been established by treating platelets with Serratia marcescens protease under conditions causing cleavage of 95-97% glycoprotein Ib (2.5 micrograms for 30 min). High-affinity binding was lost under these conditions, but the platelets continued to show moderate-affinity binding (Kd1 = 16 +/- 5 nM; 930 +/- 300 sites/platelet) and low-affinity binding (Kd2 = 4.6 +/- 3 microM; 170,000 +/- 90,000 sites/platelet), in good agreement with the values previously obtained for moderate- and low-affinity binding in intact platelets [Harmon, J.T., & Jamieson, G.A. (1986) J. Biol. Chem. 261, 15928-15933]. Platelets treated with Serratia protease under these conditions were about 4-fold less sensitive to activation by alpha-thrombin, as measured by serotonin secretion. Crossover studies with analogues showed that binding of alpha-thrombin was compatible by both D-phenyl-alanyl-L-prolyl-L-arginine chloromethyl ketone treated thrombin and N alpha-p-tosyl-L-lysine chloromethyl ketone treated thrombin, and both analogues were capable of inhibiting activation of Serratia-proteolyzed platelets by alpha-thrombin. These studies establish that the moderate-affinity platelet binding site for alpha-thrombin is a receptor, occupancy of which is required for platelet activation in the absence of the high-affinity receptor.  相似文献   

17.
N E Larsen  E R Simons 《Biochemistry》1981,20(14):4141-4147
alpha-Thrombin has previously been shown to bind to specific, saturable glycoproteins on the platelet surface. Modification of the thrombin active site with tosyllysyl chloromethyl ketone (TosLysCH2Cl) does not alter thrombin's binding characteristics. Interaction of alpha-thrombin with high-affinity binding sites (KD = 10(-9) M) initiates the platelet response which involves proteolytic hydrolysis of this glycoprotein. Although TosLysCH2Cl--thrombin binds to and competes for the same sites as alpha-thrombin, it cannot induce platelet stimulation because it is enzymatically inactive. In this study, we describe the preparation and application of photoreactive tritium-labeled thrombin analogues. The alpha-thrombin derivative retains its platelet-stimulating and enzymatic activities and, upon photoactivation, covalently binds to specific platelet membrane components. When freshly washed human platelets are exposed to less than saturation doses (less than or equal to 2 nM) of the thrombin derivatives in the dark and photoactivated, a single labeled complex is detected. The same experiment with greater than saturating doses (greater than or equal to 20 nM) of the thrombin derivative yields a similar complex as well as two additional ones. Molecular weight estimates of these thrombin-bound complexes were obtained by gel filtration and NaDodSO4--polyacrylamide gel electrophoresis. The low dose (high affinity) complex with TosLysCH2Cl--thrombin has an approximate molecular weight of 200 000, while that with active alpha-thrombin is smaller, approximately 120 000, due to enzymatic cleavage. The additional complexes detected with the high thrombin dose had estimated molecular weights of 400 000 and 46 000, respectively, and appeared to be the same for TosLysCH2Cl--thrombin and for the alpha-thrombin coupled platelets. These isolated complexes appear to correspond to the two previously detected populations of thrombin binding sites on the platelet.  相似文献   

18.
We have shown recently that the calcium-dependent phospholipid-binding protein annexin V (placental anticoagulant protein I) can be used to study the exposure of anionic phospholipid after platelet activation. In this study we have further examined the mechanism of this process. Collagen-induced exposure of annexin V binding sites correlated directly with increased ability to support activity of the reconstituted prothrombinase complex. The potency of annexin V as an inhibitor of platelet prothrombinase was the same as its Kd for platelets. Prior incubation of platelets with 5'-p-fluorosulfonylbenzoyladenosine or p-chloromercuribenzenesulfonate had no significant effect on annexin V binding. Similarly, inhibition of platelet cyclic endoperoxide synthesis by acetylsalicylic acid or indomethacin did not inhibit annexin V binding. Staurosporine inhibited collagen-induced, but not A23187-induced, annexin V binding. Agents that increase intraplatelet cyclic nucleotides partially inhibited collagen-induced annexin V binding. Thus, collagen-induced exposure of anionic phospholipid appears to depend primarily on increases in intraplatelet free calcium and may be independent of ADP- or endoperoxide-mediated pathways. Binding sites for annexin V on microparticles derived from collagen-stimulated platelets were demonstrated by flow cytometry and gel filtration. In addition, prior incubation of platelets with 100 nM annexin V inhibited factor Va binding to both platelets and platelet-derived microparticles. These results support the concept that the procoagulant effect of platelets and platelet-derived microparticles is mediated by calcium-induced exposure of anionic phospholipids.  相似文献   

19.
Competition binding studies have been carried out to evaluate the antagonism of TLCK-thrombin (N alpha-tosyl-L-lysine chloromethyl ketone-treated thrombin) and PPACK-thrombin (D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone-treated thrombin) with alpha-thrombin using computer-assisted analysis of the binding isotherms (LIGAND). alpha-Thrombin bound to high, moderate, and low affinity sites as previously described (Harmon, J. T., and Jamieson, G. A. (1985) Biochemistry 24, 58-64). PPACK-thrombin bound to all three sites accessible to alpha-thrombin (K1, 7 nM; R1, 20 sites/platelet; K2, 3 nM; R2, 1800 sites/platelet; K3, 510 nM; R3, 84,000 sites/platelet) as well as to a separate fourth site (Kx, 0.4 nM; Rx, 20 sites/platelet) for PPACK-thrombin that was not accessible to alpha-thrombin. In contrast, TLCK-thrombin did not bind to the high affinity site for alpha-thrombin but bound to the moderate and low affinity sites for alpha-thrombin with similar affinity (K2, 2 nM; R2, 890 sites/platelet; K3, 900 nM; R3, 100,000 sites/platelet) and to another site (Ky, 0.03 nM; Ry, 10 sites/platelet) which was not accessible to alpha-thrombin. As predicted from these binding studies, TLCK-thrombin did not compete with alpha-thrombin for platelet activation at concentrations as high as 1000 nM (500-fold excess). In contrast a 300-fold excess of PPACK-thrombin (670 nM) totally inhibited platelet activation by 2 nM thrombin. These results demonstrate that the high affinity binding site for thrombin on human platelets is a classical receptor, occupancy of which is necessary for platelet activation by low concentrations of thrombin; that TLCK-thrombin does not occupy this high affinity site and hence cannot inhibit platelet activation by alpha-thrombin; and that PPACK-thrombin does compete with alpha-thrombin at the high affinity site and is an antagonist of alpha-thrombin induced activation.  相似文献   

20.
The substrate specificity of thrombin is regulated by binding of macromolecular substrates and effectors to exosites I and II. Exosites I and II have been reported to be extremely linked allosterically, such that binding of a ligand to one exosite results in near-total loss of affinity for ligands at the alternative exosite, whereas other studies support the independence of the interactions. An array of fluorescent thrombin derivatives and fluorescein-labeled hirudin(54-65) ([5F]Hir(54-65)(SO(3)(-))) were used as probes in quantitative equilibrium binding studies to resolve whether the affinities of the exosite I-specific ligands, Hir(54-65)(SO(3)(-)) and fibrinogen, and of the exosite II-specific ligands, prothrombin fragment 2 and a monoclonal antibody, were affected by alternate exosite occupation. Hir(54-65)(SO(3)(-)) and fibrinogen bound to exosite I with dissociation constants of 16-28 nm and 5-7 microm, respectively, which were changed < or =2-fold by fragment 2 binding. Native thrombin and four thrombin derivatives labeled with different probes bound fragment 2 and the antibody with dissociation constants of 3-12 microm and 1.8 nm, respectively, unaffected by Hir(54-65)(SO(3)(-)). The results support a ternary complex binding model in which exosites I and II can be occupied simultaneously. The thrombin catalytic site senses individual and simultaneous binding of exosite I and II ligands differently, resulting in unique active site environments for each thrombin complex. The results indicate significant, ligand-specific allosteric coupling between thrombin exosites I and II and catalytic site perturbations but insignificant inter-exosite thermodynamic linkage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号