首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The appearance of protein aggregates is a characteristic of protein misfolding disorders including familial amyotrophic lateral sclerosis, a neurodegenerative disease caused by inherited mutations in Cu/Zn superoxide dismutase 1 (SOD1). Here, we use live cell imaging of neuronal and nonneuronal cells to show that SOD1 mutants (G85R and G93A) form an aggregate structure consisting of immobile scaffolds, through which noninteracting cellular proteins can diffuse. Hsp70 transiently interacts, in a chaperone activity-dependent manner, with these mutant SOD1 aggregate structures. In contrast, the proteasome is sequestered within the aggregate structure, an event associated with decreased degradation of a proteasomal substrate. Through the use of time-lapse microscopy of individual cells, we show that nearly all (90%) aggregate-containing cells express higher levels of mutant SOD1 and died within 48 h, whereas 70% of cells expressing a soluble mutant SOD1 survived. Our results demonstrate that SOD1 G85R and G93A mutants form a distinct class of aggregate structures in cells destined for neuronal cell death.  相似文献   

2.
Copper/zinc superoxide dismutase (SOD1) is an abundant intracellular enzyme with an essential role in antioxidant defense. The activity of SOD1 is dependent upon the presence of a bound copper ion incorporated by the copper chaperone for superoxide dismutase, CCS. To elucidate the cell biological mechanisms of this process, SOD1 synthesis and turnover were examined following 64Cu metabolic labeling of fibroblasts derived from CCS+/+ and CCS-/- embryos. The data indicate that copper is rapidly incorporated into both newly synthesized SOD1 and preformed SOD1 apoprotein, that each process is dependent upon CCS and that once incorporated, copper is unavailable for cellular exchange. The abundance of apoSOD1 is inversely proportional to the intracellular copper content and immunoblot and gel filtration analysis indicate that this apoprotein exists as a homodimer that is distinguishable from SOD1. Despite these distinct differences, the abundance and half-life of SOD1 is equivalent in CCS+/+ and CCS-/- fibroblasts, indicating that neither CCS nor copper incorporation has any essential role in the stability or turnover of SOD1 in vivo. Taken together, these data provide a cell biological model of SOD1 biosynthesis that is consistent with the concept of limited intracellular copper availability and indicate that the metallochaperone CCS is a critical determinant of SOD1 activity in mammalian cells. These kinetic and biochemical findings also provide an important framework for understanding the role of mutant SOD1 in the pathogenesis of familial amyotrophic lateral sclerosis.  相似文献   

3.
More than 100 different mutations in Cu,Zn-superoxide dismutase (SOD1) are linked to a familial form of amyotrophic lateral sclerosis (fALS). Pathogenic mutations facilitate fibrillar aggregation of SOD1, upon which significant structural changes of SOD1 have been assumed; in general, however, a structure of protein aggregate remains obscure. Here, we have identified a protease-resistant core in wild-type as well as fALS-causing mutant SOD1 aggregates. Three different regions within an SOD1 sequence are found as building blocks for the formation of an aggregate core, and fALS-causing mutations modulate interactions among these three regions to form a distinct core, namely SOD1 aggregates exhibit mutation-dependent structural polymorphism, which further regulates biochemical properties of aggregates such as solubility. Based upon these results, we propose a new pathomechanism of fALS in which mutation-dependent structural polymorphism of SOD1 aggregates can affect disease phenotypes.  相似文献   

4.
Cysteine-to-serine mutants of a maltose binding protein fusion with the human copper chaperone for superoxide dismutase (hCCS) were studied with respect to (i) their ability to transfer Cu to E,Zn superoxide dismutase (SOD) and (ii) their Zn and Cu binding and X-ray absorption spectroscopic (XAS) properties. Previous work has established that Cu(I) binds to four cysteine residues, two of which, C22 and C25, reside within an Atox1-like N-terminal domain (DI) and two of which, C244 and C246, reside in a short unstructured polypeptide chain at the C-terminus (DIII). The wild-type (WT) protein shows an extended X-ray absorption fine structure (EXAFS) spectrum characteristic of cluster formation, but it is not known how such a cluster is formed. Cys to Ser mutagenesis was used to investigate the Cu binding in more detail. Single Cys to Ser mutations, as represented by C22S and C244S, did little to affect the metal binding ratios of hCCS. Both mutants still showed approximately 2 Cu(I) ions and 1 Zn ion per protein. The double mutants C22/24S and C244/246S, on the other hand, showed Cu binding stoichiometries close to 1:1. The Zn-EXAFS of WT CCS showed a 3-4 histidine ligand environment that is consistent with Zn binding in the SOD-like domain II of CCS. The Zn environment remained unchanged between wild type and all of the mutant CCS proteins. Single Cys to Ser mutations displayed lower activity than WT protein, although close to full activity could be rescued by increasing the CCS:SOD ratios to 8:1 in the assay mixture. The structure of the Cu centers of the single mutants as revealed by EXAFS was also similar to that of WT protein, with clear indications of a Cu cluster. On the other hand, the double mutants showed a greater degree of perturbation. The DI C22/25S mutant was 70% active and formed a cluster with a more intense Cu-Cu interaction. The DIII C244/246S mutant retained only a fraction (16%) of activity and did not form a cluster. The results suggest the formation of a DIII-DIII cluster within a dimeric or tetrameric protein and further suggest that this cluster may be an important element of the copper transfer machinery.  相似文献   

5.
The copper chaperone for superoxide dismutase (CCS) is an intracellular metallochaperone required for incorporation of copper into the essential antioxidant enzyme copper/zinc superoxide dismutase (SOD1). Nutritional studies have revealed that the abundance of CCS is inversely proportional to the dietary and tissue copper content. To determine the mechanisms of copper-dependent regulation of CCS, copper incorporation into SOD1 and SOD1 enzymatic activity as well as CCS abundance and half-life were determined after metabolic labeling of CCS-/- fibroblasts transfected with wild-type or mutant CCS. Wild-type CCS restored SOD1 activity in CCS-/- fibroblasts, and the abundance of this chaperone in these cells was inversely proportional to the copper content of the media, indicating that copper-dependent regulation of CCS is entirely post-translational. Although mutational studies demonstrated no role for CCS Domain I in this copper-dependent regulation, similar analysis of the CXC motif in Domain III revealed a critical role for these cysteine residues in mediating copper-dependent turnover of CCS. Further mutational studies revealed that this CXC-dependent copper-mediated turnover of CCS is independent of the mechanisms of delivery of copper to SOD1 including CCS-SOD1 interaction. Taken together these data demonstrate a mechanism determining the abundance of CCS that is competitive with the process of copper delivery to SOD1, revealing a unique post-translational component of intracellular copper homeostasis.  相似文献   

6.
Aggregation of Cu, Zn superoxide dismutase (SOD1) is often found in amyotrophic lateral sclerosis patients. The fibrillar aggregates formed by wild type and various disease-associated mutants have recently been found to have distinct cores and morphologies. Previous computational and experimental studies of wild-type SOD1 suggest that the apo-monomer, highly aggregation prone, displays substantial local unfolding dynamics. The residual folded structure of locally unfolded apoSOD1 corresponds to peptide segments forming the aggregation core as identified by a combination of proteolysis and mass spectroscopy. Therefore, we hypothesize that the destabilization of apoSOD1 caused by various mutations leads to distinct local unfolding dynamics. The partially unfolded structure, exposing the hydrophobic core and backbone hydrogen bond donors and acceptors, is prone to aggregate. The peptide segments in the residual folded structures form the "building block" for aggregation, which in turn determines the morphology of the aggregates. To test this hypothesis, we apply a multiscale simulation approach to study the aggregation of three typical SOD1 variants: wild type, G37R, and I149T. Each of these SOD1 variants has distinct peptide segments forming the core structure and features different aggregate morphologies. We perform atomistic molecular dynamics simulations to study the conformational dynamics of apoSOD1 monomer and coarse-grained molecular dynamics simulations to study the aggregation of partially unfolded SOD1 monomers. Our computational studies of monomer local unfolding and the aggregation of different SOD1 variants are consistent with experiments, supporting the hypothesis of the formation of aggregation "building blocks" via apo-monomer local unfolding as the mechanism of SOD1 fibrillar aggregation.  相似文献   

7.
Many point mutations in human Cu,Zn superoxide dismutase (SOD) cause familial amyotrophic lateral sclerosis (FALS), a fatal neurodegenerative disorder in heterozygotes. Here we show that these mutations cluster in protein regions influencing architectural integrity. Furthermore, crystal structures of SOD wild-type and FALS mutant H43R proteins uncover resulting local framework defects. Characterizations of beta-barrel (H43R) and dimer interface (A4V) FALS mutants reveal reduced stability and drastically increased aggregation propensity. Moreover, electron and atomic force microscopy indicate that these defects promote the formation of filamentous aggregates. The filaments resemble those seen in neurons of FALS patients and bind both Congo red and thioflavin T, suggesting the presence of amyloid-like, stacked beta-sheet interactions. These results support free-cysteine-independent aggregation of FALS mutant SOD as an integral part of FALS pathology. They furthermore provide a molecular basis for the single FALS disease phenotype resulting from mutations of diverse side-chains throughout the protein: many FALS mutations reduce structural integrity, lowering the energy barrier for fibrous aggregation.  相似文献   

8.
Point mutations scattered throughout the sequence of Cu,Zn superoxide dismutase (SOD1) cause a subset of amyotrophic lateral sclerosis (ALS) cases. SOD1 is a homodimer in which each subunit binds one copper atom and one zinc atom. Inclusions containing misfolded SOD1 are seen in motor neurons of SOD1-associated ALS cases. The mechanism by which these diverse mutations cause misfolding and converge on the same disease is still not well understood. Previously, we developed several time-resolved techniques to monitor structural changes in SOD1 as it unfolds in guanidine hydrochloride. By measuring the rates of Cu and Zn release using an absorbance-based assay, dimer dissociation through chemical cross-linking, and β-barrel conformation changes by tryptophan fluorescence, we established that wild-type SOD1 unfolds by a branched pathway involving a Zn-deficient monomer as the dominant intermediate of the major pathway, and with various metal-loaded and Cu-deficient dimers populated along the minor pathway. We have now compared the unfolding pathway of wild-type SOD1 with those of A4V, G37R, G85R, G93A, and I113T ALS-associated mutant SOD1. The kinetics of unfolding of the mutants were generally much faster than those of wild type. However, all of the mutants utilize the minority pathway to a greater extent than the wild-type protein, leading to greater populations of Cu-deficient intermediates and decreases in Zn-deficient intermediates relative to the wild-type protein. The greater propensity of the mutants to populate Cu-deficient states potentially implicates these species as a pathogenic form of SOD1 in SOD1-associated ALS and provides a novel target for therapeutic intervention.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disorder is characterized by the degeneration of upper and lower motor neuron. ALS occurs due to various notably prominent missense mutations, in gene encoding Cu‐Zn superoxide dismutase (SOD1) thereby leading to aggregation, dysfunction and reduced Zn binding affinity. In this study, one such mutation, G85R was explored in comparison with wild type SOD1, using discrete molecular dynamics (DMD). Accordingly, the conformational changes were significantly observed in mutant SOD1, through various geometrical parameters, which substantiated the difference in conformational deviation, flexibility and compactness, thus stipulating a root cause for aggregation. Followed by, analysis of essential dynamics further authenticated the cause behind the protein dysfunction. In particular, the high content of beta sheet with structural deviations, down to dysfunction was established in mutant as compared to wild type, while passing through secondary structure analysis. Subsequently, the deviation of distance in Zn binding residues was distinctly portrayed in mutant as compared to wild type, thus confirming the cause of reduced Zn binding affinity. In addition, the steered molecular dynamics analysis also authenticated the above results indicating the reduced Zn binding affinity in the mutant as compared to that of the wild type. Hence, this work revealed the theoretical mechanism to unravel the mutational effects of cofactor dependent protein. Proteins 2017; 85:1276–1286. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Aggregates of Cu/Zn superoxide dismutase (SOD) have been demonstrated in familial amyotrophic lateral sclerosis (FALS) and other neurodegenerative diseases; however, their role in disease pathogenesis is unclear. In this study, we investigated the presence of SOD aggregates in nerve growth factor (NGF)-differentiated PC12 cells and cell viability following: (i) transduction with replication-deficient recombinant adenoviruses (AdVs) expressing wild-type SOD (SODWT) or mutant SOD (SODMT, V148G or A4V); (ii) transfection of yellow fluorescent protein-tagged SODWT (SODWT-YFP) or SODMT (SODA4V-YFP, SODV148G-YFP). SOD aggregates were more prominent in cells following transduction of AdSODMT than AdSODWT and following treatment with H2O2, suggesting that mutant SOD leads to oxidation of cellular components. In addition, cells expressing SODMT-YFP yielded SOD aggregates that were significantly larger and more frequent than SOD aggregates in cells expressing SODWT-YFP. Proteasome inhibitors, but not cathepsin B inhibitors, increased aggregate formation but did not increase cell death. In addition, treatments that increased cell viability did not significantly decrease SOD aggregates. Taken together, our data demonstrate that there is no association between SOD aggregates and cell death in FALS.  相似文献   

11.
Determining the composition of aggregated superoxide dismutase 1 (SOD1) species associated with amyotrophic lateral sclerosis (ALS), especially with respect to co-aggregated proteins and post-translational modifications, could identify cellular or biochemical factors involved in the formation of these aggregates and explain their apparent neurotoxicity. The results of mass spectrometric and shotgun-proteomic analyses of SOD1-containing aggregates isolated from spinal cords of symptomatic transgenic ALS mice using two different isolation strategies are presented, including 1) resistance to detergent extraction and 2) size exclusion-coupled anti-SOD1 immunoaffinity chromatography. Forty-eight spinal cords from three different ALS-SOD1 mutant mice were analyzed, namely G93A, G37R, and the unnatural double mutant H46R/H48Q. The analysis consistently revealed that the most abundant proteins recovered from aggregate species were full-length unmodified SOD1 polypeptides. Although aggregates from some spinal cord samples contained trace levels of highly abundant proteins, such as vimentin and neurofilament-3, no proteins were consistently found to co-purify with mutant SOD1 in stoichiometric quantities. The results demonstrate that the principal protein in the high molecular mass aggregates whose appearance correlates with symptoms of the disease is the unmodified, full-length SOD1 polypeptide.  相似文献   

12.
Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H2O2, mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation.  相似文献   

13.
Studies have found that mutant, misfolded superoxide dismutase [Cu–Zn] (SOD1) can convert wild type SOD1 (wtSOD1) in a prion-like fashion, and that misfolded wtSOD1 can be propagated by release and uptake of protein aggregates. In developing a prion-like mechanism for this propagation of SOD1 misfolding we have previously shown how enervation of the SOD1 electrostatic loop (ESL), caused by the formation of transient non-obligate SOD1 oligomers, can lead to an experimentally observed gain of interaction (GOI) that results in the formation of SOD1 amyloid-like filaments. It has also been shown that freedom of ESL motion is essential to catalytic function. This work investigates the possibility that restricting ESL mobility might not only compromise superoxide catalytic activity but also serve to promote the peroxidase activity of SOD1, thus implicating the formation of SOD1 oligomers in both protein misfolding and in protein oxidation.  相似文献   

14.
Dominant mutations in Cu,Zn-superoxide dismutase (SOD1) cause a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. A growing body of evidence suggests that fALS-causing mutations destabilize the native structure of SOD1, leading to aberrant protein interactions for aggregation. SOD1 becomes stabilized and enzymatically active after copper and zinc binding and intramolecular disulfide formation, but it remains unknown which step(s) in the SOD1 maturation process is important in the pathological aggregation. In this study we have shown that apoSOD1 without disulfide is the most facile state for formation of amyloid-like fibrillar aggregates. fALS mutations impair either zinc binding, disulfide formation, or both, leading to accumulation of the aggregation-prone, apo, and disulfide-reduced SOD1. Moreover, we have found that the copper chaperone for SOD1 (CCS) facilitates maturation of SOD1 and that CCS overexpression ameliorates intracellular aggregation of mutant SOD1 in vivo. Based on our in vivo and in vitro results, we propose that facilitation of post-translational modifications is a promising strategy to reduce SOD1 aggregation in the cell.  相似文献   

15.
Mutations in Cu,Zn superoxide dismutase (SOD1) can cause amyotrophic lateral sclerosis (ALS) through mechanisms proposed to involve SOD1 misfolding, but the intracellular factors that modulate folding and stability of SOD1 are largely unknown. By using yeast and mammalian expression systems, we demonstrate here that SOD1 stability is governed by post-translational modification factors that target the SOD1 disulfide. Oxidation of the human SOD1 disulfide in vivo was found to involve both the copper chaperone for SOD1 (CCS) and the CCS-independent pathway for copper activation. When both copper pathways were blocked, wild type SOD1 stably accumulated in yeast cells with a reduced disulfide, whereas ALS SOD1 mutants A4V, G93A, and G37R were degraded. We describe here an unprecedented role for the thiol oxidoreductase glutaredoxin in reducing the SOD1 disulfide and destabilizing ALS mutants. Specifically, the major cytosolic glutaredoxin of yeast was seen to reduce the intramolecular disulfide of ALS SOD1 mutant A4V SOD1 in vivo and in vitro. By comparison, glutaredoxin was less reactive toward the disulfide of wild type SOD1. The apo-form of A4V SOD1 was highly reactive with glutaredoxin but not SOD1 containing both copper and zinc. Glutaredoxin therefore preferentially targets the immature form of ALS mutant SOD1 lacking metal co-factors. Overall, these studies implicate a critical balance between cellular reductants such as glutaredoxin and copper activation pathways in controlling the disulfide and stability of SOD1 in vivo.  相似文献   

16.
17.
Mutations in Cu/Zn superoxide dismutase (SOD1) are linked to motor neuron death in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism, although misfolded SOD1 aggregates are commonly associated with disease. Proteomic analysis of the transgenic SOD1(G93A) ALS rat model revealed significant up-regulation of endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI) family members in lumbar spinal cords. Expression of SOD1 mutants (mSOD1) led to an up-regulation of PDI in motor neuron-like NSC-34 cells but not other cell lines. Inhibition of PDI using bacitracin increased aggregate production, even in wild type SOD1 transfectants that do not readily form inclusions, suggesting PDI may protect SOD1 from aggregation. Moreover, PDI co-localized with intracellular aggregates of mSOD1 and bound to both wild type and mSOD1. SOD1 was also found in the microsomal fraction of cells despite being a predominantly cytosolic enzyme, confirming ER-Golgi-dependent secretion. In SOD1(G93A) mice, a significant up-regulation of unfolded protein response entities was also observed during disease, including caspase-12, -9, and -3 cleavage. Our findings therefore implicate unfolded protein response and ER stress-induced apoptosis in the patho-physiology of familial ALS. The possibility that PDI may be a therapeutic target to prevent SOD1 aggregation is also raised by this study.  相似文献   

18.
Abstract: Some cases of autosomal-dominant familial amyotrophic lateral sclerosis (FALS) have been associated with mutations in SOD1 , the gene that encodes Cu/Zn superoxide dismutase (Cu/Zn SOD). We determined the concentrations (µg of Cu/Zn SOD/mg of total protein), specific activities (U/µg of total protein), and apparent turnover numbers (U/µmol of Cu/Zn SOD) of Cu/Zn SOD in erythrocyte lysates from patients with known SOD1 mutations. We also measured the concentrations and activities of Cu/Zn SOD in FALS patients with no identifiable SOD1 mutations, sporadic ALS (SALS) patients, and patients with other neurologic disorders. The concentration and specific activity of Cu/Zn SOD were decreased in all patients with SOD1 mutations, with mean reductions of 51 and 46%, respectively, relative to controls. In contrast, the apparent turnover number of the enzyme was not altered in these patients. For the six mutations studied, there was no correlation between enzyme concentration or specific activity and disease severity, expressed as either duration of disease or age of onset. No significant alterations in the concentration, specific activity, or apparent turnover number of Cu/Zn SOD were detected in the FALS patients with no identifiable SOD1 mutations, SALS patients, or patients with other neurologic disorders. That Cu/Zn SOD concentration and specific activity are equivalently reduced in erythrocytes from patients with SOD1 mutations suggests that mutant Cu/Zn SOD is unstable in these cells. That concentration and specific activity do not correlate with disease severity suggests that an altered, novel function of the enzyme, rather than reduction of its dismutase activity, may be responsible for the pathogenesis of FALS.  相似文献   

19.
Astrocytes contribute to the death of motor neurons via non-cell autonomous mechanisms of injury in amyotrophic lateral sclerosis (ALS). Since mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) underlie the neuropathology of some forms of familial ALS, we explored how expression of mutant SOD1 protein A4V SOD1-EGFP affected the biology of secondary murine astrocytes. A4V SOD1-EGFP expressing astrocytes (72 h after transfection) displayed decreased mitochondrial activity (~45%) and l-glutamate transport (~25%), relative to cells expressing wild-type SOD1-EGFP. A4V SOD1-EGFP altered F-actin and Hoechst staining, indicative of cytoskeletal and nuclear changes, and altered GM130 labelling suggesting fragmentation of Golgi apparatus. SOD1 inclusion formation shifted from discrete to “punctate” over 72 h with A4V SOD1-EGFP more rapidly producing inclusions than G85R SOD1-EGFP, and forming more punctate aggregates. A4V, not wild-type SOD1-EGFP, exerted a substantial, time-dependent effect on GFAP expression, and ~60% of astrocytes became stellate and hypertrophic at 72 h. Spreading toxicity was inferred since at 72 h ~80% of bystander cells exhibited hypertrophy and stellation. This evidence favours mutant SOD1-containing astrocytes releasing destructive species that alter the biology of adjacent astrocytes. This panoply of mutant SOD1-induced destructive events favours recruitment of astrocytes to non-cell autonomous injury in ALS.  相似文献   

20.
Molecular and Cellular Biochemistry - Aberrant structural formations of Cu/Zn superoxide dismutase enzyme (SOD1) are the probable mechanism by which circumscribed mutations in the SOD1 gene cause...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号