首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 182 毫秒
1.
The genetic population structure of coastal cutthroat trout ( Oncorhynchus clarki clarki ) in Washington state was investigated by analysis of variation in allele frequencies at six highly polymorphic microsatellite loci for 13 anadromous populations, along with one outgroup population from the Yellowstone subspecies ( O. clarki bouvieri) (mean heterozygosity = 67%; average number of alleles per locus = 24). Tests for genetic differentiation revealed highly significant differences in genotypic frequencies for pairwise comparisons between all populations within geographical regions and overall population subdivision was substantial ( F ST = 0.121, R ST = 0.093), with 44.6% and 55.4% of the among-population diversity being attributable to differences between streams ( F SR = 0.054) and between regions ( F RT = 0.067), respectively. Analysis of genetic distances and geographical distances did not support a simple model of isolation by distance for these populations. With one exception, neighbour-joining dendrograms from the Cavalli-Sforza and Edwards' chord distances and maximum likelihood algorithms clustered populations by physiogeographic region, although overall bootstrap support was relatively low (53%). Our results suggest that coastal cutthroat trout populations are ultimately structured genetically at the level of individual streams. It appears that the dynamic balance between gene flow and genetic drift in the subspecies favours a high degree of genetic differentiation and population subdivision with the simultaneous maintenance of high heterozygosity levels within local populations. Results are discussed in terms of coastal cutthroat trout ecology along with implications for the designation of evolutionarily significant units pursuant to the US Endangered Species Act of 1973 and analogous conservation units.  相似文献   

2.
Genotyping of koalas at CA-repeat microsatellite loci has revealed significant differences in the levels of allelic diversity ( A ) and expected heterozygosity ( H¯ E) between populations from north-eastern and south-eastern Australia. In the 10 populations studied, allelic diversity ranged from 8.0 in the Nowendoc population to 1.7 in the Kangaroo Is. population, and values of H¯ E ranged from 0.831 in the Nowendoc population to 0.331 in the Kangaroo Is. population. Data from pooled populations revealed koalas from the north-eastern region had significantly higher levels of allelic diversity ( A = 11.5 ± 1.4) than those from south-eastern Australia ( A = 5.3 ± 1.0). Furthermore significantly higher heterozygosity levels were found in the north-eastern ( H¯ E= 0.851) vs. the south-eastern ( H¯ E= 0.436) regions of Australia. Following a near-extinction bottleneck in the 1920s, mainland Victorian and Kangaroo Is. koalas have been involved in an extensive program of relocations. The source populations of the relocated animals were islands in Westernport Bay, which were founded by very few individuals in the late 1800s and early 1900s. The significantly lower levels of variation between south-eastern Australian populations suggests that human intervention has had a severe effect on levels of genetic diversity in this region, and this may have long-term genetic consequences.  相似文献   

3.
We have isolated specific microsatellite loci from a partial genomic library of brook charr Salvelinus fontinalis. Their usefulness was investigated by measuring intra- and inter-population genetic diversity at four loci among 20 individuals from each of five lakes located 3 to 22 km apart in La Mauricie national park (Canada). These markers were moderately to highly polymorphic. A total of five, six, 16 and 18 alleles per locus were detected, and their overall expected heterozygosity was 0.53, 0.58, 0.86 and 0.87. Strong inter-population diversity was detected. Highly significant differences in allelic frequencies were found in all but two pairwise χ2 permutation tests between populations at all loci. Numerous population unique alleles were observed in all five lakes. Consequently, a highly significant component of total genetic diversity was due to interpopulation variance, as exemplified by G ST values of 0.33, 0.42, 0.47 and 0.84 for each individual locus. Altogether, the results indicated that these loci should be valuable in addressing fine scale population genetics questions in brook charr. To our knowledge, they also represent the first available microsatellites developed in the genus Salvelinus.  相似文献   

4.
Allozyme genetic variability in five natural populations of Cyclobalanopsis championii (Fagaceae) in Taiwan was investigated using 12 loci from 9 enzyme systems. The average values of parameters describing within-population variation, expected heterozygosity (He = 0.151), the percentage of polymorphic loci per individual (P = 50%), the average number of alleles per locus (A = 1.7), effective number of alleles per locus (Ae = 1.25), and the average number of alleles per polymorphic loci (AP = 2.2) are comparable to those of other long-lived woody plants. The overall fixation index (Fis = 0.208) indicates a significant deficiency of heterozygotes at the population level. Allelic frequency deviation from Hardy-Weinberg equilibrium was found for different loci in different populations. An exact test for population differentiation using the Tools for Population Genetic Analyses program also indicates that allelic frequencies among populations are significantly different (P < .001). Among-population variation, Gst, accounted for 9.2% of the total heterozygosity. The population at Shouchia and the southernmost population Nanjenshan had higher inbreeding coefficients (0.177 and 0.153, respectively) than did the northern populations. Genetic drift is supported by the observations of the variance components of linkage disequilibrium and a large proportion of loci in Nanjenshan and Shouchia that show pairwise locus disequilibrium. We believe continuous genetic drift in the southern populations will increase genetic divergence among populations of C. championii in Taiwan. Significant correlation was found between elevation and expected heterozygosity. We therefore inferred that temperature is the most important ecological factor to influence the genetic diversity of C. championii.  相似文献   

5.
Historically documented founder events provide opportunities to assess the effects of population size reductions on genetic variation, but the actual magnitude of genetic change can be measured only when direct comparisons can be made to the source or ancestral population. We assayed variation at nine microsatellite loci in the translocated population of the Laysan finch ( Telespiza cantans ) at Pearl and Hermes reef (PHR), and compared the level of variation to that in the source population on Laysan Island. Heterogeneity in allele frequencies was highly significant at eight of the nine loci, primarily as a result of fluctuations in allele frequencies in the three PHR populations. Intra- and interpopulational measures of genetic diversity generally matched predictions based on the well-documented history of three islet populations at PHR: significantly lower numbers of alleles and polymorphic loci, as well as higher pairwise F ST values and genetic distance, were observed for the two populations that underwent severe size reductions. Changes in heterozygosity at single loci were unpredictable, as both significant increases and decreases were observed in founder populations. A significant excess of heterozygotes was found in two populations and was highly significant over all four finch populations ( P < 0.003). Estimates of effective population size from temporal changes in heterozygosity and allele frequencies were very small ( N e≤ 30) as a result of the founding events and the constraints of islet area on population numbers. We concluded that the PHR population is not adequate as a secondary genetic reserve for T. cantans , and an alternative refuge needs to be established.  相似文献   

6.
Patterns of genetic diversity were examined in five endemic subspecies of the Lobularia canariensis complex from six of the Canary Islands. The taxa are interfertile, insect-pollinated outbreeders with wind dispersal. Electrophoretic analysis revealed a high level of genetic polymorphism at ten loci coding soluble enzymes, with a mean of 2.38 alleles per locus, 73.7 % polymorphic loci, and a mean heterozygosity of 0.279. Excesses of homozygotes, indicating inbreeding, were observed in small populations. The average total diversity was high, F.,=0.518. Among-population diversity, FST=0.318, contributed more to the total diversity than within-population diversity, FIS=0.222. Little geographic or taxonomic patterning of the allozyme variation was observed. The mean genetic identitity for pairwise comparisons of the 19 populations was 0.76, with a range of 0.51–0.96 and c. 17 % of the comparisons below 0.67 and c. 8 % above 0.90. The results contrast with the many cases of high genetic identities reported for populations of endemic plants on oceanic islands. High levels of allozyme divergence suggest a relatively old origin of the L. canariensis complex and a long period of isolation of some of the populations.  相似文献   

7.
Lychnis alpina is a perennial caryophyllaceous plant with an amphi-Atlantic distribution. 27 populations are described on the basis of allozyme data from 11 electro-phoretic loci. L. alpina has a relatively low level of genetic variation, 3 of the loci are polymorphic ( P.,%= 20.2%) and the mean expected heterozygosity per indivindual is H3= 0.233 the three polymorphic loci included (H = 0.064, 11 loci included). Despite relatively low level of genetic variation, the genetic diversity among populations is relatively high with FST= 0.51. A hierarchial analysis of genetic diversity demonstrates that most of the genetic diversity exists as interpopulational, intra-regional diversity. Genetic identity is not associated with the intercontinental geographical distribution of the populations, neither is the diversity correspondant to taxonomic relationships.  相似文献   

8.
Abstract Dioscorea tokoro Makino is a herbaceous climber species widespread in East Asia. Genetic structure of a natural population of D. tokoro was examined employing starch gel electrophoresis of allozymes. Genotypes of seven loci were studied for 1,128 individuals. Twenty-six populations located mainly in the Kinki district of Japan were subgrouped into four large clusters by the geographical distribution of alleles. The D. tokoro population was revealed to contain greater total genetic diversity ( HT =0.282) and higher intrapopulational genetic diversity ( HS =0.258) than other outcrossing species for which data are available. On the other hand, interpopulational differentiation ( GST =0.096) was smaller than in other outcrossers. For the heterozygosity deficiency observed ( FIT =0.125), population subdivision ( FST =0.096) and inbreeding within the population ( FIS =0.067) were revealed to contribute to the same extent. From these F -statistics, the migration rate among subpopulations and the rate of between-relative matings were estimated. Overall results on the genetic structure of the D. tokoro population indicated a high gene flow among its subpopulations, and this may be the consequence of its life form as a climber and its habitat in a disturbed environment. During the study, the geographical cline of Pgi allele frequencies was observed. This finding was supposed to be the result of the selection imposed on Pgi by the temperature differences between localities.  相似文献   

9.
The Swedish sand lizard ( Lacerta agilis ) is a relict species from the post-glacial warmth period. From the geological history of this region, and more recent data on population fragmentation due to disturbance by man, it can be surmised that the Swedish sand lizards passed through at least one population bottleneck in relatively recent times. We tested this hypothesis by investigating the amount and structuring of genetic variability in six microsatellite loci in ten lizard populations from different parts of Sweden. We contrasted these data against those from a Hungarian population which we have reason to assume strongly resembles the founder population for Swedish sand lizards. The average number of alleles per locus in Sweden was 3.3, and these alleles were common in almost all populations, whereas the average number of alleles in the Hungarian population was 8.0. Likewise, the level of expected heterozygosity was lower in the Swedish populations (0.45) compared to the Hungarian population (0.70). The lower variability in Swedish populations is probably a consequence of a common population bottleneck during the immigration subsequent to the latest glacial period. The remaining variability is strongly subdivided between populations (FST=0.30) with the main genetic differences being between rather than within populations. Despite the marked isolation of the populations and the present small population sizes (N= 10–300 adults), the Swedish relict populations show a surprisingly high level of observed heterozygosity, indicating that small population size is probably a recent phenomenon.  相似文献   

10.
It is important to detect population bottlenecks in threatened and managed species because bottlenecks can increase the risk of population extinction. Early detection is critical and can be facilitated by statistically powerful monitoring programs for detecting bottleneck-induced genetic change. We used Monte Carlo computer simulations to evaluate the power of the following tests for detecting genetic changes caused by a severe reduction in a population's effective size ( N e): a test for loss of heterozygosity, two tests for loss of alleles, two tests for change in the distribution of allele frequencies, and a test for small N e based on variance in allele frequencies (the 'variance test'). The variance test was most powerful; it provided an 85% probability of detecting a bottleneck of size N e = 10 when monitoring five microsatellite loci and sampling 30 individuals both before and one generation after the bottleneck. The variance test was almost 10-times more powerful than a commonly used test for loss of heterozygosity, and it allowed for detection of bottlenecks before 5% of a population's heterozygosity had been lost. The second most powerful tests were generally the tests for loss of alleles. However, these tests had reduced power for detecting genetic bottlenecks caused by skewed sex ratios. We provide guidelines for the number of loci and individuals needed to achieve high-power tests when monitoring via the variance test. We also illustrate how the variance test performs when monitoring loci that have widely different allele frequency distributions as observed in five wild populations of mountain sheep ( Ovis canadensis ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号