首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of embryos of the ascidians Boltenia villosa and Cnemidocarpa finmarkiensis and the sea urchin Strongylocentrotus purpuratus with the anti-HSP90 drugs geldanamycin and radicicol caused morphogenetic arrest. All embryonic stages during which obvious morphogenesis was observed were sensitive to treatment, including formation of the sea urchin blastular epithelium. Arrested embryos were viable for many hours to days post-treatment, indicating a low general toxicity of these drugs. Morphogenetic movements including gastrulation and migration (but not ingression) of sea urchin primary and secondary mesenchyme cells were arrested 8-10 h after treatment began. Cell division and developmentally regulated expression of some genes continued after morphogenesis was arrested. Anti-HSP90 drugs cause selective inactivation or degradation of proteins with which the protein chaperone HSP90 interacts. Therefore, morphogenetic arrest subsequent to the disruption of HSP90 function may result from the reduction in concentration, or activity, of client proteins required for morphogenetic movements of cells. The use of these drugs may provide a means to identify novel activities or proteins involved in morphogenesis.  相似文献   

2.
Drosophila ventral furrow morphogenesis: a proteomic analysis   总被引:3,自引:0,他引:3  
Ventral furrow formation is a key morphogenetic event during Drosophila gastrulation that leads to the internalization of mesodermal precursors. While genetic analysis has revealed the genes involved in the specification of ventral furrow cells, few of the structural proteins that act as mediators of ventral cell behavior have been identified. A comparative proteomics approach employing difference gel electrophoresis was used to identify more than fifty proteins with altered abundance levels or isoform changes in ventralized versus lateralized embryos. Curiously, the majority of protein differences between these embryos appeared well before gastrulation, only a few protein changes coincided with gastrulation, suggesting that the ventral cells are primed for cell shape change. Three proteasome subunits were found to differ between ventralized and lateralized embryos. RNAi knockdown of these proteasome subunits and time-dependent difference-proteins caused ventral furrow defects, validating the role of these proteins in ventral furrow morphogenesis.  相似文献   

3.
Diverse mechanisms of morphogenesis generate a wide variety of animal forms. In this work, we discuss two ways that the mechanical properties of embryonic tissues could guide one of the earliest morphogenetic movements in animals, gastrulation. First, morphogenetic movements are a function of both the forces generated by cells and the mechanical properties of the tissues. Second, cells could change their behavior in response to their mechanical environment. Theoretical studies of gastrulation indicate that different morphogenetic mechanisms differ in their inherent sensitivity to tissue mechanical properties. Those few empirical studies that have investigated the mechanical properties of amphibian and echinoderm gastrula-stage embryos indicate that there could be high embryo-to-embryo variability in tissue stiffness. Such high embryo-to-embryo variability would imply that gastrulation is fairly robust to variation in tissue stiffness. Cell culture studies demonstrate a wide variety of cellular responses to the mechanical properties of their microenvironment. These responses are likely to be developmentally regulated, and could either increase or decrease the robustness of gastrulation movements depending on which cells express which responses. Hence both passive physical and mechanoregulatory processes will determine how sensitive gastrulation is to tissue mechanics. Addressing these questions is important for understanding the significance of diverse programs of early development, and how genetic or environmental perturbations influence development. We discuss methods for measuring embryo-to-embryo variability in tissue mechanics, and for experimentally perturbing those mechanical properties to determine the sensitivity of gastrulation to tissue mechanics.  相似文献   

4.
The effects of specific inhibitors of cholinesterases on chick development were studied. Inhibitors were injected into the eggs, at final concentration ranging between 1 mM and 10 nM. Their effects were depending on inhibitor concentration, and detectable at stages as more advanced as more diluted were the inhibitors. The strongest teratogenic effects on gastrulation, neurulation and morphogenesis were caused by BW 284c51, specific inhibitor of acetylcholinesterase. Its effects were compared to those of ion channels blockers. The inhibitors action seems to be correlated to an altered cholinergic system and to consequently altered intercellular communications.  相似文献   

5.
Effects of ethanol on the primitive streak stage mouse embryo   总被引:1,自引:0,他引:1  
Recent studies of mouse models have suggested that malformations associated with the fetal alcohol syndrome (FAS) are caused by the effects of ethanol on early embryos during gastrulation and neurulation. A study of Xenopus laevis embryos showed that exposure of gastrula stage amphibian embryos to ethanol inhibits migration of the mesodermal cells, causes formation of small neural plates, and subsequently causes hypoplastic craniofacial malformations in tadpoles. We now report effects of ethanol on the primitive streak stage mouse embryos. An ethanol solution (25%) was injected intraperitonealy twice into mice of 6.5-7.0 days of pregnancy at a dose of 0.015 ml/gm of body weight. Histological and morphometric examinations of 7.5-day embryos, 20 hr after the second injection, showed that the epiblast layer was disorganized and shrunk with formation of many blebs. In addition, formation of the mesodermal cell layer was retarded in the ethanol-treated embryos, suggesting that exposure of gastrula stage embryos to ethanol causes similar abnormalities in mouse and Xenopus embryos. These results suggest that the inhibition of the morphogenetic movements during gastrulation may be the primary effect of ethanol in causing major craniofacial malformations of FAS.  相似文献   

6.
Sometime before or during the early Mesozoic era, new lineages of actinopterygian (ray-finned) fishes radically transformed their mode of gastrulation. During this evolutionary transformation, yolky endoderm was a hotspot for ontogenetic change. As holoblastic cleavage patterns were modified into meroblastic cleavage patterns, major changes in cell identity specification occurred within the mesendodermal marginal zone, as well as in the superficial epithelium of the embryo. These cellular identity changes resulted in the appearance of two novel extra-embryonic tissues within the embryos of teleostean fishes: the enveloping layer (EVL) and the yolk syncytial layer (YSL). The generation of these extra-embryonic tissues prompted major morphogenetic changes within the Organizer Region. As these evolutionary changes occurred, the outermost cell layer of the Organizer (the Organizer Epithelium) was apparently retained as a signaling center necessary for the establishment of left-right embryonic asymmetry in the embryo. Conserved and derived features of Organizer morphogenesis and gastrulation within ancient lineages of ray-finned fishes provide important insights into how the genetically encoded cell behaviors of early morphogenesis can be altered during the course of evolution. In particular, a highly divergent form of actinopterygian gastrulation, which is found in the annual fishes of South America, demonstrates that no aspect of vertebrate gastrulation is inherently immutable to evolutionary change.  相似文献   

7.
BMPRIA is a receptor for bone morphogenetic proteins with high affinity for BMP2 and BMP4. Mouse embryos lacking Bmpr1a fail to gastrulate, complicating studies on the requirements for BMP signaling in germ layer development. Recent work shows that BMP4 produced in extraembryonic tissues initiates gastrulation. Here we use a conditional allele of Bmpr1a to remove BMPRIA only in the epiblast, which gives rise to all embryonic tissues. Resulting embryos are mosaics composed primarily of cells homozygous null for Bmpr1a, interspersed with heterozygous cells. Although mesoderm and endoderm do not form in Bmpr1a null embryos, these tissues are present in the mosaics and are populated with mutant cells. Thus, BMPRIA signaling in the epiblast does not restrict cells to or from any of the germ layers. Cells lacking Bmpr1a also contribute to surface ectoderm; however, from the hindbrain forward, little surface ectoderm forms and the forebrain is enlarged and convoluted. Prechordal plate, early definitive endoderm, and anterior visceral endoderm appear to be expanded, likely due to defective morphogenesis. These data suggest that the enlarged forebrain is caused in part by increased exposure of the ectoderm to signaling sources that promote anterior neural fate. Our results reveal critical roles for BMP signaling in endodermal morphogenesis and ectodermal patterning.  相似文献   

8.
9.
The formation of the nervous system in vertebrate embryos involves extensive morphogenetic movements that include the folding of the neural tube and the migration of neural crest cells. Changes in cell shape and cell movements underlie neural morphogenesis but the molecular mechanisms involved in these processes in vivo are not well understood. Here, we show that a new member of the hepatocyte growth factor family, which we name Livertine, is expressed in frog embryos in neural cells including neural crest and midline neural plate cells which are undergoing pronounced morphogenetic movements. The ectopic expression of Livertine perturbs gastrulation and leads to positional changes in injected cells without apparently changing cell type. These results suggest that one of the normal functions of Livertine is the control of neural morphogenesis in the vertebrate embryo.  相似文献   

10.
The Spemann organizer secretes several antagonists of growth factors during gastrulation. We describe a novel secreted protein, Mig30, which is expressed in the anterior endomesoderm of the Spemann organizer. Mixer-inducible gene 30 (Mig30) was isolated as a target of Mixer, a homeobox gene required for endoderm development. The Mig30 gene encodes a secreted protein containing a cysteine-rich domain and an immunoglobulin-like domain that belongs to the insulin-like growth factor-binding protein family. Overexpression of Mig30 in the dorsal region results in the retardation of morphogenetic movements during gastrulation and leads to microcephalic embryos. Overexpression of Mig30 also inhibits activin-induced elongation of ectodermal explants without affecting gene expression patterns in mesoderm and endoderm. These results suggest that Mig30 is involved in the regulation of morphogenetic movements during gastrulation in the extracellular space of the Spemann organizer.  相似文献   

11.
During amphibian gastrulation, the embryo is transformed by the combined actions of several different tissues. Paradoxically, many of these morphogenetic processes can occur autonomously in tissue explants, yet the tissues in intact embryos must interact and be coordinated with one another in order to accomplish the major goals of gastrulation: closure of the blastopore to bring the endoderm and mesoderm fully inside the ectoderm, and generation of the archenteron. Here, we present high-resolution 3D digital datasets of frog gastrulae, and morphometrics that allow simultaneous assessment of the progress of convergent extension, blastopore closure and archenteron formation in a single embryo. To examine how the diverse morphogenetic engines work together to accomplish gastrulation, we combined these tools with time-lapse analysis of gastrulation, and examined both wild-type embryos and embryos in which gastrulation was disrupted by the manipulation of Dishevelled (Xdsh) signaling. Remarkably, although inhibition of Xdsh signaling disrupted both convergent extension and blastopore closure, mesendoderm internalization proceeded very effectively in these embryos. In addition, much of archenteron elongation was found to be independent of Xdsh signaling, especially during the second half of gastrulation. Finally, even in normal embryos, we found a surprising degree of dissociability between the various morphogenetic processes that occur during gastrulation. Together, these data highlight the central role of PCP signaling in governing distinct events of Xenopus gastrulation, and suggest that the loose relationship between morphogenetic processes may have facilitated the evolution of the wide variety of gastrulation mechanisms seen in different amphibian species.  相似文献   

12.
In the present study the role of glycosphingolipids (GSL) in amphibian development was investigated. We analysed the de novo synthesis of neutral GSL and gangliosides through the initial stages of Bufo arenarum embryo development and their participation during gastrulation using 1-phenyl-2-palmitoyl-3-morpholino-1-propanol (PPMP), a potent inhibitor of glucosylceramide synthase. Ganglioside synthesis began at the blastula stage and reached a maximum during gastrulation (stages 10-12) while neutral GSL synthesis showed a slight gradual increase, the former being quantitatively more significant than the latter. Ganglioside synthesis was reduced by 90% while neutral GSL synthesis was inhibited by 65% when embryos at blastula stage were cultured for 24 h in 20 microM PPMP. The depletion of GSL from amphibian embryos induced an abnormal gastrulation in a dose-dependent manner. We found that PPMP had a pronounced effect on development since no embryos exhibited normal gastrulation; their developmental rate either slowed down or, more often, became totally arrested. Morphological analysis of arrested embryos revealed inhibition of the gastrulation morphogenetic movements. Analysis of mesodermal cell morphology in those embryos showed a severe decrease in the number and complexity of cellular extensions such as filopodia and lamellipodia. Mesodermal cells isolated from PPMP-treated embryos had very low adhesion percentages. Our results suggest that glycosphingolipids participate in Bufo arenarum gastrulation, probably through their involvement in cell adhesion events.  相似文献   

13.
Bone morphogenetic protein (BMP) inhibition has been proposed as the primary determinant of neural cell fate in the developing Xenopus ectoderm. The evidence supporting this hypothesis comes from experiments in explanted "animal cap" ectoderm and in intact embryos using BMP antagonists that are unregulated and active well before gastrulation. While informative, these experiments cannot answer questions regarding the timing of signals and the behavior of cells in the more complex environment of the embryo. To examine the effects of BMP antagonism at defined times in intact embryos, we have generated a novel, two-component system for conditional BMP inhibition. We find that while blocking BMP signals induces ectopic neural tissue both in animal caps and in vivo, in intact embryos, it can only do so prior to late blastula stage (stage 9), well before the onset of gastrulation. Later inhibition does not induce neural identity, but does induce ectopic neural crest, suggesting that BMP antagonists play temporally distinct roles in establishing neural and neural crest identity. By combining BMP inhibition with fibroblast growth factor (FGF) activation, the neural inductive response in whole embryos is greatly enhanced and is no longer limited to pre-gastrula ectoderm. Thus, BMP inhibition during gastrulation is insufficient for neural induction in intact embryos, arguing against a BMP gradient as the sole determinant of ectodermal cell fate in the frog.  相似文献   

14.
The Wnt signaling pathway is increasingly recognized as a highly branched signaling network. Experimental uncoupling of the different branches of this pathway has proven difficult, as many single components are shared downstream by multiple, distinct pathways. In this report, we demonstrate that the upstream Wnt antagonists Xwnt5a and Nxfz-8, which inhibit normal morphogenetic movements during Xenopus gastrulation, act independently of the canonical Wnt signaling pathway. This finding is important, as it highlights the promiscuity of upstream Wnt signaling components and further establishes an important role for non-canonical Wnt signaling in Xenopus morphogenesis.  相似文献   

15.
Embryos of the sea urchin, Stronglyocentrotus purpuratus, synthesize several classes of sulfated and non-sulfated glycoproteins during gastrulation. The antibiotic tunicamycin, which is a specific inhibitor of the N-glycosylation of proteins, inhibits the synthesis of lipid-linked oligosaccharides in these embryos at concentrations which have little effect on the biosynthesis of other classes of glycolipids or on protein synthesis. As a consequence of this inhibition, glycoproteins with oligosaccharide side chains of the general type (Man)5-7-(GlcNAc)2 are not synthesized. In addition, the biosynthesis of a novel class of sulfated glycoproteins is inhibited. In contrast, no effect upon the synthesis of sulfated glycosaminoglycans is seen. The morphogenetic consequence of tunicamycin treatment is that development of embryos from the mesenchyme blastula to the gastrula stage is arrested. The results provide evidence that during development glycoproteins containing both unsulfated and sulfated N-glycosidically linked oligosaccharide chains are synthesized via the lipid-linked pathway. The biosynthesis of these molecules appears to be a prerequisite to the differentiation and morphogenesis that occurs during gastrulation.  相似文献   

16.
Summary Embryos of the paedogenetically reproducing gall midge Heteropeza pygmaea develop floating in the haemocoel of a so-called mother larva. The egg membranes remain permeable and the embryos increase in size during embryonic development by taking up nutrients from the haemolymph. Such embryos can be cultured in vitro, i.e. in haemolymph drops obtained from mother larvae. We tested the effects of several drugs known to interact with cytoskeletal elements on different stages of embryonic development, including cleavage and gastrulation. The drugs were added to the in vitro cultures and the effects were studied with time-lapse cine-micrography. Colchicine and vinblastine blocked cleaving eggs in metaphase stage and arrested yolk globule oscillation. In spite of such a block blastoderms once formed continued development through germ band formation and extension and also increased in size. Cytochalasin B did not affect the stage of cleavage; however, it inhibited gastrulation and subsequent morphogenetic processes and also prevented size increase. We conclude that (1) the functioning of microtubules is needed for yolk globule oscillation during cleavage interphases but not for the gastrulation processes subsequent to blastoderm formation and (2) microfilaments do not play an important role in cleavage, at least not for the orderly succession of the cleavage divisions, but are essential for the morphogenetic movements associated with gastrulation. We suggest that during cleavage a limited stock of microtubules and their precursors is responsible for both transport of chromosomes during mitoses and translocation of organelles during interphase. Yolk oscillation seems to be a secondary effect and of minor or no importance for the normal course of embryonic development.Dedicated to Professor Gerhard Krause on the occasion of his 80th birthday  相似文献   

17.
18.
In the present paper we established the ganglioside composition of the blastula and gastrula stages of the anuran amphibian Bufo arenarum, two relevant stages characterized by dynamic changes in morphology and cellular rearrangements. Densitometric studies evidenced that GD1a and GT1b were the more abundant gangliosides of the blastula embryos whereas GM1 and GM2 were the predominant species in gastrula embryos. Analysis of ganglioside abundance indicates that the "a" and "b" synthesis pathways perform similar biosynthetic activities in the blastula stage, in contrast to the gastrula stage in which a marked predominance of the "a" pathway occurred. The spatio-temporal expression of GM1 and of polygangliotetraosyl ceramides (pGTC) was investigated by wholemount immunocytochemistry using cholera toxin B subunit (CTB) and an affinity purified human anti-GM1 antibody. The pGTC were detected as GM1 after treatment with neuraminidase. Blastomeres from the inner surface of the blastocoelic roof (BCR) of blastula embryos were GM1 and pGTC positive. At midgastrula stage, embryos showed an increased labeling on the inner surface of BCR. To establish whether the GM1 ganglioside was involved in the gastrulation processes, CTB, anti-GM1 antibodies and anti-GM1 Fab' fragments were microinjected into the blastocoel cavity of blastula embryos. Treatment with the probes blocked gastrulation. Scanning electron microscopy analysis of blocked embryos revealed that mesodermal cell migration, radial interdigitation, and convergent extension movements were affected. The blocking of gastrulation was correlated with the absence of fibronectin and EP3/EP4 on the inner surface of blastocoelic roof of CTB- or anti-GM1 treated embryos. Results show that the GM1 ganglioside is differentially expressed by embryonic cells and participates in the morphogenetic processes of amphibian gastrulation. J. Exp. Zool. 286:457-472, 2000.  相似文献   

19.
Surface proteins in the first embryonic stages (8–32 cells, morula, blastula, early and late gastrula) of Pleurodeles waltlii were selectively labelled by 125I using lactoperoxidase and glucose/glucose oxidase. Iodination was effected either on non-dissociated embryos or after their dissociation with EDTA. On the outer surface of non-dissociated embryos the two-dimensional electrophoresis revealed only three groups of 125I-labelled proteins which did not change during all studied stages. Quite different results were obtained with the cells of dissociated embryos. In addition to the iodinated proteins of the embryonic outer surface seven major iodinated proteins were identified. These proteins originate from the regions of cell-cell contacts in intact embryo. Their two-dimensional pattern in dissociated cells changes between stages 8–32 cells and morula. The next important difference was observed during gastrulation, which corresponds in Pleurodeles waltlii to the first morphogenetic movements. Therefore the outside and inside cell surfaces of embryo are different already at stage 8–32 cells (and probably earlier), before the first step of morphogenesis. The changes of cell surface proteins at early embryonal development take place inside the embryo, in the regions of cell-cell interactions.  相似文献   

20.
Gastrulation is a morphogenetic process in which tightly coordinated cell and tissue movements establish the three germ layers (ectoderm, mesoderm, and endoderm) to define the anterior-to-posterior embryonic organization [1]. To elicit this movement, cells modulate membrane protrusions and undergo dynamic cell interactions. Here we report that ankyrin repeats domain protein 5 (xANR5), a novel FGF target gene product, regulates cell-protrusion formation and tissue separation, a process that develops the boundary between the ectoderm and mesoderm [2, 3], during Xenopus gastrulation. Loss of xANR5 function by antisense morpholino oligonucleotide (MO) caused a short trunk and spina bifida without affecting mesodermal gene expressions. xANR5-MO also blocked elongation of activin-treated animal caps (ACs) and tissue separation. The dorsal cells of xANR5-MO-injected embryos exhibited markedly reduced membrane protrusions, which could be restored by coinjecting active Rho. Active Rho also rescued the xANR5-MO-inhibited tissue separation. We further demonstrated that xANR5 interacted physically and functionally with paraxial protocadherin (PAPC), which has known functions in cell-sorting behavior, tissue separation, and gastrulation cell movements [4-6], to regulate early morphogenesis. Our findings reveal for the first time that xANR5 acts through Rho to regulate gastrulation and is an important cytoplasmic partner of PAPC, whose cytoplasmic partner was previously unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号