首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The stepwise synthesis of mononuclear (4f) and heterodinuclear (3d–4f) Salen-like complexes has been investigated through structural determination of the intermediate and final products occurring in the process. In the first step, reactions of ligand H2L and Ln(NO3)3 · 6H2O give rise to three mononuclear lanthanide complexes Ln(H2L)(NO3)3 [H2L = N,N′-ethylene-bis(3-methoxysalicylideneimine), Ln = Nd (1), Eu (2) and Tb (3)], in which N,N′-ethylene-bis(3-methoxysalicylideneimine) acts as tetradentate ligands with the O2O2 set of donor atoms capable of effective coordination. These species are fairly stable and have been isolated. Then, addition of Cu(Ac)2 · H2O to the mononuclear lanthanide complex yields expected heterodinuclear (3d–4f) complexes Cu(L)Ln(NO3)3 · H2O [Ln = Nd (4) and Eu (5)] where the Cu(II) ion is inserted to the inner N2O2 cavity. Luminescent analysis reveals that complex 3 exhibits characteristic metal-centered fluorescence of Tb(III) ion. However, the characteristic luminescence of both Sm(III) and Eu(III) ions is not observed both in solution and solid state of the complexes.  相似文献   

2.
The interaction between Ac-AMP2, a lectin-like small protein with antimicrobial and antifungal activity isolated from Amaranthus caudatus, and N,N′,N″-triacetyl chitotriose was studied using 1H NMR spectroscopy. Changes in chemical shift and line width upon increasing concentration of N,N′,N″-triacetyl chitotriose to Ac-AMP2 solutions at pH 6.9 and 2.4 were used to determine the interaction site and the association constant Ka. The most pronounced shifts occur mainly in the C-terminal half of the sequence. They involve the aromatic residues Phe18, Tyr20 and Tyr27 together with their surrounding residues, as well as the N-terminal Val-Gly-Glu segment. Several NOEs between Ac-AMP2 and the N,N′,N″-triacetyl chitotriose resonances are reported.  相似文献   

3.
Three different synthetic routes have been explored for the synthesis of the mono-N-substituted phosphinoamine N-ethyl,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine: (a) selective alkylation of N,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine; (b) linkage of the different fragments of N-ethyl,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine; (c) selective acylation of N,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine followed by acetyl reduction. While approaches (a) and (b) were unsuccessful, N-ethyl,N′bis[2(diphenylphosphino)phenyl]propane-1,3-diamine was obtained by route (c) via separation of the mono- and di-alkylated P2N2-species obtained from reduction, through complexation of Ni(NO3)26H2O followed by demetallation reaction with KCN. Additional related phosphinoamine chelates and phosphonium adducts were synthesized and characterized by conventional physico–chemical techniques.  相似文献   

4.
The X-ray structure is reported for the complex Cu2(medpco-2H)Cl2, (medpco = N,N′-bis-N,N-dimethylaminoethyl)pyridine-2,6-dicarboxamide 1-oxide. The complex is triclinic, , a=8.313(4), B=11.403(5), C=11.611(3) Å, =91.66(3), β=108.99(4), γ=109.60(3)° and Z=2. The deprotonated ligand (medpco-2H)2− acts as a binulceating ligand, producing an N-oxide-bridged complex. Each copper in Cu2(medpco-2H)Cl2 is five-coordinate, being coordinated by a bridging N-oxide oxygen, a deprotonated amide nitrogen, a tertiary amine nitrogen and two bridging chlorides. The complex does not exhibit significant magnetic interaction, and this may be the result of distortion of the bridging geometry from planarity. A range of other, apparently N-oxide-bridged, complexes of the type Cu2(medpco-2H)X2 is reported. The complex Cu2(medpco-2H)Br2·H2O is strongly antiferromagnetic, with magnetic data closely fitting the expected binuclear structure.  相似文献   

5.
The ligand N, N′-bis[2,2-dimethyl-4-(2-hydroxyphenyl)-3-aza-3-buten] oxamide with two identical coordination sites reacts with copper ions in its tetradeprotonated form to yield the dinuclear complex [Cu2(C24H26N4O4)]·H2O. The structure of this compound has been determined by the X-ray diffraction method. The crystals are orthorhombic with a = 11.744(1), B = 16.369(2), C = 26.340(3) Å, V = 5064(1) Å3, Z = 8, space group Pbca. The oxamide is in a trans conformation with two different environments for the copper centres, a (4 + 1) coordination mode for the first one and a square planar environment for the other one. The water molecule is not directly bound to a copper centre, but involved in hydrogen bonding with the two oxygen atoms of an N2O2 coordination site. Indeed, extra coordination comes from a phenolic oxygen atom belonging to an adjacent dinuclear unit. Static susceptibility measurements point to a strong intrapair antiferromagnetic exchange interaction of 2J = −520(±4) cm−1 and possibly an interpair ferromagnetic exchange interaction of 10(±5) cm−1.  相似文献   

6.
The chlorocadmate(II) systems of (H2me2pipz)[Cd2Cl6(H2O)2] (1) and (H2mepipz)2[Cd3Cl10(H2O)] (2) (L = me2pipz = N,N′-dimethylpiperazine; L′ = mepipz = N-methylpiperazine) were prepared and their structural and thermal properties investigated. Compound 1 is monoclinic, space group P21/c, A = 7.664(1), B = 7.472(4), C = 15.347(1) Å, β = 99.468(7)°, Z = 2, R = 0.024. The crystal structure consists of organic cations and infinite one-dimensional chains of [CdCl3(H2O)]n3− anions. Each Cd atom is octahedrally surrounded by bridged and terminal chlorine atoms and by a water molecule, which is in trans position with respect to the terminal chlorine atom. Inter- and intrachain hydrogen bond interactions between the terminal chlorine atoms and the water molecules contribute to the crystal packing. Compound 2 is orthorhombic, space group Cmc21, A = 15.286(3), B = 13.354(3), C = 13.154(3) Å, R = 0.023. The crystal structure consists of organic dications and infinite chains of [Cd2Cl6(CdCl4H2O]n4− units running along the [001] axis. Each unit is formed of regularly alternate six-coordinated Cd atoms, one of them linking one pentacoordinated Cd atom which completes its coordination througha water molecule. A strong hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential hydrogen bond interaction involving the organic dication and the inorganic chain contributes to the crystal packing. Differential scanning calorimetry measurements did not show the presence of any structural phase transitions. The structures are compared with those of (H2pipz)[Cd2Cl6(H2O)2] (3), (H2mepipz)[Cd2Cl6(H2O)2]·H2O (4) and (H2mepipz)[Cd2Cl6] (5) (L = pipz = piperazine, L′ = mepipz = N-ethylpiperazine).  相似文献   

7.
1,10-Phenanthroline-5,6-dione (C12H6N2O2 (1)) reacts with V(η6-mesitylene)2 and Ti(η6-toluene)2 affording coordination compounds of general formula M(O,O′---C12H6N2O2)3 (M=Ti (2); M=V (3)) which further react with TiCl4 or TiCp2(CO)2 yielding the tetrametallic species M(O,O′---C12H6N2O2---N,N′)3(M′Ln)3 (M=V, M′Ln=TiCl4 (4); M=Ti, M′Ln=TiCp2 (5); M=V, M′Ln=TiCp2 (6)). The complex salt [Fe(N,N′---C12H6N2O2)3][PF6]2 (7) has been obtained from iron(II) chloride tetrahydrate and 1 in the presence of NH4PF6. The reaction of 7 with TiCp2(CO)2 affords the tetrametallic derivative [Fe(N,N′---C12H6N2O2---O,O′)3(TiCp2)3][PF6]2 (8). TiCl2(THF)2 reacts with MCp2(O,O′---C12H6N2O2) to give MCp2(O,O′---C12H6N2O2---N,N′)TiCl2 (M=Ti (9); M=V (10)). By reaction of TiCp2(O,O′---C12H6N2O2---N,N′)TiCl2 (9) with C12H6N2O2, the bimetallic derivative TiCp2(O,O′---C12H6N2O2---N,N′)TiCl2(O,O′---C12H6N2O2) (11) has been prepared, which readily adds to TiCl4, to give the trimetallic titanium derivative TiCp2(O,O′---C12H6N2O2---N,N′)TiCl2(O,O′---C12H6N2O2---N,N′)TiCl4 (12). VCp2(O,O′---C12H6N2O2---N,N′)TiCl2 (10) reacts with the tris-chelate iron(II) cation 7 affording the heptametallic cationic complex [Fe(N,N′---C12H6N2O2---O,O′)TiCl2(N,N′---C12H6N2O2---O,O′)VCp2]3 +2 isolated as the hexafluorophosphate 13.  相似文献   

8.
The mononuclear manganese(III) complexes [C5H10NH2][MnL2] [L2−=a substituted N-(2-hydroxybenzyl)glycinate (hbg2−) viz. 3,5-dibromo- (3,5-Br-hbg2−), 3,5-dichloro- (3,5-Cl-hbg2−), 3-methyl-5-chloro- (3,5-Me,Cl-hbg2−), 5-bromo- (5-Br-hbg2−), 5-chloro- (5-Cl-hbg2−), 5-nitro- (5-NO2-hbg2−) or N-(5-nitro-2-hydroxybenzyl)sarcosine (5-NO2-hbs2−)] have been synthesised by reaction of the appropriate ligand with manganese(II) perchlorate under ambient conditions in a 2:1 molar ratio using piperidine as base. The structures of three of these complexes, [C5H10NH2][Mn(3,5-Cl-hbg)2] (2), [C5H10NH2][Mn(5-NO2-hbg)2] (6) and [C5H10NH2][Mn(5-NO2-hbs)2] (7) have been elucidated by single-crystal X-ray crystallography and each displays two similar, independent [MnL2] ions in the asymmetric unit linked via piperidinium cations through hydrogen bonding. The ligands co-ordinate in a facial tridentate fashion with the three donor atoms being the phenolate and carboxylate oxygens and the amine nitrogen. The geometry at the Mn centres is compressed rhombic octahedral consistent with a pseudo-Jahn–Teller compression along the Mn–O(phenolate) axis. Mean bond lengths are in the ranges 1.886–1.889 Å for the Mn–O(phenolate), 2.062–2.125 Å for the Mn–O(carboxylate) and 2.091–2.184 Å for the Mn–N(amine) distances. The magnetic susceptibility and electronic and IR spectroscopic data are discussed with reference to the crystal structures.  相似文献   

9.
Carbohydrate-bearing polymers of biologically inert design are versatile tools to delineate functional aspects of oligosaccharides. Binding of synthetic N-substituted polyacrylamide (PAA) conjugates of histo-blood group (Adi, Atri, Bdi, Btri, Hdi, SiaLea, and SiaLex) to human polymorphonuclear leukocytes (PMNs), and effects on H2O2 generation elicited by different agonists such as digitonin, N-formyl-Met-Leu-Phe (FMLP) and the galactoside-specific lectin from Viscum album L. (VAA) were assessed. PMNs expressed binding sites for blood group-related neoglycoconjugates in the range of N106–107/cell with KD-values in the μM range. Treatment of PMNs (2×106 cells/ml) with PAA-probes (50 μg/ml) for 5 min did not activate the “respiratory burst”. However, it led to suppression (range 20–70%) of H2O2 generation of cells in the presence of elicitors. In detail, the FMLP-induced response was significantly decreased by Adi, Atri, Btri, Hdi, SiaLea, and SiaLex conjugates, whereas for digitonin one only by Adi, Atri, Btri. All the seven tested PAA-probes were found to inhibit significantly VAA-mediated release of H2O2 from PMNs. In this case, interference can take place already, at the stage of initial binding, especially for B- and H-epitopes, but less prominently for A- and SiaLe-epitopes. These results support the notion that PAA-immobilized histo-blood group oligosaccharides can serve as effector molecules with the ability to reduce the H2O2-generation of PMNs, warranting further studies on the involved reaction pathway.  相似文献   

10.
3-[3-(Piperidinomethyl)phenoxy]alkyl, N-cyano-N′-[ω-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidine and 2-(5-methyl-4-imidazolyl)methyl thioethyl derivatives containing fluorescent functionalities were synthesized and the histamine H2 receptor affinity was evaluated using the H2 antagonist [125I]-aminopotentidine. The compounds exhibited weak to potent H2 receptor affinity with pKi values ranging from <4 to 8.85. The highest H2 receptor affinity was observed for N-cyano-N′-[ω-[3-(1-piperidinylmethyl)phenoxy]alkyl]guanidines substituted with methylanthranilate (13), cyanoindolizine (6) and cyanoisoindole (11) moieties via an ethyl or propyl linker.  相似文献   

11.
Five heterometallic compounds with formulae [Ba(H2O)4Cr2(μ-OH)2(nta)2] · 3H2O (I), [M(bpy)2(H2O)2] [Cr2(OH)2(nta)2] · 7H2O, where M2+ = Zn, (II); Ni, (III); Co, (IV) and [Mn(H2O)3(bpy)Cr2(OH)2(nta)2] · (bpy) · 5H2O (V); bpy = 2,2′-bipyridine, (nta = nitrilotriacetate ion) have been prepared by reaction of I with the corresponding MII-sulfates in the presence of 2,2′-bipyridine. Substances I–V have been characterized by magnetic susceptibility measurements, EPR and X-ray determinations. I represents a 2D coordination polymer formed by coordination of centrosymmetrical dimeric chromium(III) units and Barium cations. The 10-coordinate Ba polyhedron is completed by four water molecules. Compounds II–IV are isostructural and consist of non-centrosymmetric dimeric anions [Cr2(μ-OH)2(nta)2]2−, complex cations [MII(bpy)2(H2O)2]2+ and solvate water molecules. The octahedral coordination of chromium atoms implies four donor atoms of the nta3− ligands and two bridging OH groups. Multiple hydrogen bonds of coordinated and solvate water molecules link anions and cations in a 3D network. A similar [Cr2(μ-OH)2(nta)2]2− unit is found in V. The bridging function is performed by a carboxylate oxygen atom of the nta ligand that leads to the formation of a trinuclear complex [Mn(bpy)(H2O)2Cr2(μ-OH)2(nta)2]. Experimental and calculated frequency and temperature dependences of EPR spectra of these compounds are presented. The fine structure appearing on the EPR spectra of compound V is analyzed in detail at different temperatures. It is established that the main part of the EPR signals is due to the transitions in the spin states of a spin multiplet with S = 2. Analyses of experimental and calculated spectra confirm the absence of interaction between metal ions (MII) and Cr-dimers in complexes III and IV and the presence of weak Mn–Cr interactions in V. The temperature dependence of magnetic susceptibilities for I–V was fitted on the basis of the expression derived from isotropic Hamiltonian including a bi-quadratic exchange term.  相似文献   

12.
[RuII(Me2edda)(H2O)2] (1), Me2edda2− = N,N′-dimethylethylenediaminediacetate, exhibits a sterically-controlled molecular recognition in forming η2 and η4 olefin complexes. 1 exists with an N2O2 in-plane set of chelate donors and axial H2O ligands. The two CH3 functionalities of Me2edda2− are poised above and below the N2O2 plane of the glycinato rings. Studies herein of the 2,2′-bipyridine complex, [RuII(Me2edda)(bpy)], with bidentate bpy chelation as established via 1H NMR and electrochemical methods show 1 to be ligated in the S,S configuration with the glycinato rings in-plane as a cis-O form. 1 is sterically discriminating in forming η2 complexes with smaller olefins (ethylene, 2-propene, cis-2-butene, methyl vinyl ketone and 3-cyclohexene-1-methanol), but rejects larger decorated ring structures and branched olefins (1,2-dimethyluracil, cyclohexene-1-one 2-methyl-2-propene). η2 complexes of 1 have characteristic RuII/III DPP waves near 0.55 V which vary slightly with olefin structure. Potentially bidendate dienes (1,3-butadiene, 1,3-cyclohexadiene and 2,5-norbornadiene (nbd) form η4 complexes as shown by RuII/III waves between 0.94 and 1.30 V, indicate of a highly stabilized RuII center by π-backboning. An η2η4 ‘equilibrium’ with apparent K = 22 at 25 °C is observed for nbd coordinated to 1. (The η2 and η4 distribution may be a kinetic one and not a thermodynamic one). To allow formation of the cis η4 complexes, 1 must undergo a shift of one or both glycinato donors from the N2O2 plane into the axial site away from the dimethyl functionalities. η4 chelation by 1,3-butadiene has been confirmed by 1H NMR spectral assignments of two [RuII(Me2edda)] isomers, one in the axial rans-O glycinato configuration, e.g. 1,3-butadiene is bidentate in the original N2O2 plane and a second unsymmetrical glycinato arrangement with in-plane and axial glycinato as well as in-plane and axial η4-1,3-butadiene coordination. [RuII(hedta)(H2O)] (2), hedta3− = N-hydrpxyethylenediaminetriacetate, is less discriminating for olefin structures, forming η2 complexes with all eleven olefins and dienes mentioned for studies with 1. However, 2 does not undergo displacement of a carboxylate donor by the second olefin unit of a diene [RuII(hedta)(diene)] complexes possess a pendant non-coordinated olefin and on η2-bound olefin in the complex, indicated by a normal RuII(pac)(olefin)RuII/III wave near 0.55 V.  相似文献   

13.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

14.
The hydrothermal reactions of (Ph4P)[VO2Cl2] and H2C2O4 at 150 and 125°C yield (Ph4P)2[V2O2(H2O)2(C2O4)3]·4H2O (1) and (Ph4P)[VOCl(C2O4)] (2), respectively. The structure of the molecular anion of 1 consists of a binuclear unit of oxovanadium(IV) octahedra bridged by a bisbidentate oxalate group. The VO6 coordination geometry at each vanadium site is defined by a terminal oxo group, an aquo ligand, and four oxygen donors — two from the bisbidentate bridging oxalate and two from the terminal bidentate oxalate. The structure of 2 consists of discrete Ph4P+ cations occupying regions between [VOCl(C2O4)] spiral chains. The structure of the one-dimensional anionic chain exhibits V(IV) octahedra bridged by bisbidentate oxalate groups. Crystal data: 1·4H2O, monoclinic P21/n, A = 12.694(3), B = 12.531(3), C = 17.17(3) Å, β = 106.32(2)°, V = 2621.3(13) Å3, Z = 2, Dcalc = 1.501 g cm−3, structure solution and refinement converged at a conventional residual of 0.0518; 2, tetragonal P43, A = 12.145(2), C = 15.991(3) Å, V = 2358.7(12) Å3, Z = 4, R = 0.0452.  相似文献   

15.
A number of N,N′-bis(4-substituted phenyl)-1,7-diaza-12-crown-4 and N,N′-bis(4-substituted phenyl)-1, 10-diaza-18-crown-6 (where the substituents are OCH3, CH3, H, Cl, respectively) have been prepared by cyclization reaction of a ditosylate with the appropriately substituted diol. These new macrocyclic ligands have been characterized by means of elemental analysis, IR, 1H NMR and MS spectra. The crystal structures of N,N′-bis(4-chlorophenyl)-1,10-diaza-18-crown-6 (21) and its complex with barium thiocyanate Ba(SCN)2 (22) have been determined by single crystal X-ray diffraction. The crystallographic data are as follows: 21: C24H32Cl2N2O4, orthorhombic, P212121, A=4.852(1), B=11.989(2), C=41.231(8) Å, V=2398.7(8) Å3, Z=4; 22: C26H32Cl2N4O4S2Ba, monoclinic, P21/c, A=8.801(2), B=11.653(9), C=15.756(6) Å, ß=105.96(3)°, V=1553.7(14) Å3, Z=2. In the complex, the Ba atom is eight-coordinate (O(1), O(2), O(1)′, O(2)′, N(1), N(1)′, N(21), N(21)′) to form a distorted D6h geometry with the Ba atom at the center of crystallographic symmetry.  相似文献   

16.
Electron spin resonance spin trapping was utilized to investigate free radical generation from cobalt (Co) mediated reactions using 5,5-dimethyl-l-pyrroline (DMPO) as a spin trap. A mixture of Co with water in the presence of DMPO generated 5,5-dimethylpyrroline-(2)-oxy(1) DMPOX, indicating the production of strong oxidants. Addition of superoxide dismutase (SOD) to the mixture produced hydroxyl radical (OH). Catalase eliminated the generation of this radical and metal chelators, such as desferoxamine, diethylenetriaminepentaacetic acid or 1,10-phenanthroline, decreased it. Addition of Fe(II) resulted in a several fold increase in the OH generation. UV and O2 consumption measurements showed that the reaction of Co with water consumed molecular oxygen and generated Co(II). Since reaction of Co(II) with H2O2 did not generate any significant amount of OH radicals, a Co(I) mediated Fenton-like reaction [Co(I) + H2O2 → Co(II) + OH + OH] seems responsible for OH generation. H2O2 is produced from O2 via dismutation. O2 is produced by one-electron reduction of molecular oxygen catalyzed by Co. Chelation of Co(II) by biological chelators, such as glutathione or β-ananyl-3-methyl- -histidine alters, its oxidation–reduction potential and makes Co(II) capable of generating OH via a Co(II)-mediated Fenton-like reaction [Co(II) + H2O2 → Co(III) + OH + OH]. Thus, the reaction of Co with water, especially in the presence of biological chelators, glutathione, glycylglycylhistidine and β-ananyl-3-methyl- -histidine, is capable of generating a whole spectrum of reactive oxygen species, which may be responsible for Co-induced cell injury.  相似文献   

17.
The molecular structure of the title complexes [Fe(H2O)4][Fe(Hedta)(H2O)]2 · 4H2O (I) and [Fe(H[2edta)(H2O)] · 2H2O (II) have been determined by single-crystal X-ray analyses. The crystal data are as follows: I: monoclinic, P21/n, A = 11.794(2), B = 15.990(2), C = 9.206(2) Å, β = 90.33(1)°, V = 1736.1(5) Å3, Z = 2 and R = 0.030; II: monoclinic, C2/c, A = 11.074(2), B = 9.856(2), C = 14.399(2) Å, β = 95.86(1)°, V = 1563.3(4) Å3, Z = 4 and R = 0.025. I is found to be isomorphous with the MnII analog reported earlier and to contain a seven-coordinate and approximately pentagonal-bipyramidal (PB) [FeII(Hedta)(H2O] unit in which Hedta acts as a hexadentate ligand. The [FeII(H2edta)(H2O)] unit in II has also a seven-coordinate PB structure with the two protonated equatorial glycine arms both remaining coordinated, and thus bears a structural resemblance to the seven-coordinate [CoII(H2edta)(H2O)] reported previously.  相似文献   

18.
New polydentate open structure ligands H3L1 and H3L2 were synthesized by the condensation of 2,6-diformyl-4-tert-butylphenol and corresponding N-R-o-phenylenediamines (R = Ac and R = Boc). Treating of the ligands with copper trimethylacetate leads to binuclear copper complexes with dissimilar Cu2O2 cores, the structures of which were solved by X-ray diffraction analysis. The electrochemical properties of both complexes were studied; the observed redox transitions were assigned to specific redox-active sites of the molecule. These assignments were confirmed by DFT calculations of the electronic structure of binuclear complexes. Both complexes exhibit antiferromagnetic behaviour, as confirmed by variable-temperature magnetic studies.  相似文献   

19.
Roger N.F. Thorneley 《BBA》1974,333(3):487-496
1. Single reduced methyl viologen (MV.+) acts as an electron donor in a number of enzyme systems. The large changes in extinction coefficient upon oxidation (λmax 600 nm; MV.+, = 1.3 · 104 M−1 · cm−1; oxidised form of methyl viologen (MV2+), = 0.0) make it ideally suited to kinetic studies of electron transfer reactions using stopped-flow and standard spectrophotometric techniques.

2. A convenient electrochemical preparation of large amounts of MV.+ has been developed.

3. A commercial stopped-flow apparatus was modified in order to obtain a high degree of anaerobicity.

4. The reaction of MV.+ with O2 produced H2O2 (k > 5 · 106 M−1 · s−1, pH 7.5, 25 °C). H2O2 subsequently reacted with excess MV.+ (k = 2.3 · 103 M−1 · s−1, pH 7.5, 25 °C) to produce water. The kinetics of this reaction were complex and have only been interpreted over a limited range of concentrations.

5. The results support the theory that the herbicidal action of methyl viologen (Paraquat, Gramoxone) is due to H2O2 (or radicals derived from H2O2) induced damage of plant cell membrane.  相似文献   


20.
The reaction of N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (tpen) with VCl3 in CH3CN yields Cl3V(tpen)VCl3 which was hydrolyzed in water in the presence of oxygen affording [V2O2(μ-OH)2(tpen)]I2·2H2O, the crystal structure of which has been determined. Asyn-{OV(μ-OH)2VO}2+ core has been identified where the V(IV) centers are antiferromagnetically coupled (J = −150 cm−1;g = 1.80).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号