首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring IgG antibodies are bivalent and monospecific. Bispecific antibodies having binding specificities for two different antigens can be produced using recombinant technologies and are projected to have broad clinical applications. However, co-expression of multiple light and heavy chains often leads to contaminants and pose purification challenges. In this work, we have modified the CH3 domain interface of the antibody Fc region with selected mutations so that the engineered Fc proteins preferentially form heterodimers. These novel mutations create altered charge polarity across the Fc dimer interface such that coexpression of electrostatically matched Fc chains support favorable attractive interactions thereby promoting desired Fc heterodimer formation, whereas unfavorable repulsive charge interactions suppress unwanted Fc homodimer formation. This new Fc heterodimer format was used to produce bispecific single chain antibody fusions and monovalent IgGs with minimal homodimer contaminants. The strategy proposed here demonstrates the feasibility of robust production of novel Fc-based heterodimeric molecules and hence broadens the scope of bispecific molecules for therapeutic applications.  相似文献   

2.
The development of bispecific antibodies has attracted substantial interest, and many different formats have been described. Those specifically containing an Fc part are mostly tetravalent, such as stabilized IgG-scFv fusions or dual-variable domain (DVD) IgGs. However, although they exhibit IgG-like properties and technical developability, these formats differ in size and geometry from classical IgG antibodies. Thus, considerable efforts focus on bispecific heterodimeric IgG antibodies that more closely mimic natural IgG molecules. The inherent chain association problem encountered when producing bispecific heterodimeric IgG antibodies can be overcome by several methods. While technologies like knobs-into-holes (KiH) combined with a common light chain or the CrossMab technology enforce the correct chain association, other approaches, e.g., the dual-acting Fab (DAF) IgGs, do not rely on a heterodimeric Fc part. This review discusses the state of the art in bispecific heterodimeric IgG antibodies, with an emphasis on recent progress.  相似文献   

3.
《MABS-AUSTIN》2013,5(6):653-663
The development of bispecific antibodies has attracted substantial interest, and many different formats have been described. Those specifically containing an Fc part are mostly tetravalent, such as stabilized IgG-scFv fusions or dual-variable domain (DVD) IgGs. However, although they exhibit IgG-like properties and technical developability, these formats differ in size and geometry from classical IgG antibodies. Thus, considerable efforts focus on bispecific heterodimeric IgG antibodies that more closely mimic natural IgG molecules. The inherent chain association problem encountered when producing bispecific heterodimeric IgG antibodies can be overcome by several methods. While technologies like knobs-into-holes (KiH) combined with a common light chain or the CrossMab technology enforce the correct chain association, other approaches, e.g., the dual-acting Fab (DAF) IgGs, do not rely on a heterodimeric Fc part. This review discusses the state of the art in bispecific heterodimeric IgG antibodies, with an emphasis on recent progress.  相似文献   

4.
The ability of bispecific antibodies to simultaneously bind two unique antigens has great clinical potential. However, most approaches utilized to generate bispecific antibodies yield antibody-like structures that diverge significantly from the structure of archetype human IgG, and those that do approach structural similarity to native antibodies are often challenging to engineer and manufacture. Here, we present a novel platform for the mammalian cell production of bispecific antibodies that differ from their parental mAbs by only a single point mutation per heavy chain. Central to this platform is the addition of a leucine zipper to the C terminus of the CH3 domain of the antibody that is sufficient to drive the heterodimeric assembly of antibody heavy chains and can be readily removed post-purification. Using this approach, we developed various antibody constructs including one-armed Abs, bispecific antibodies that utilize a common light chain, and bispecific antibodies that pair light chains to their cognate heavy chains via peptide tethers. We have applied this technology to various antibody pairings and will demonstrate the engineering, purification, and biological activity of these antibodies herein.  相似文献   

5.
In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the “knob-into-hole” technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.  相似文献   

6.
Bispecific antibodies are a growing class of therapeutic molecules. Many of the current bispecific formats require DNA engineering to convert the parental monoclonal antibodies into the final bispecific molecules. We describe here a method to generate bispecific molecules from hybridoma IgGs in 3–4 d using chemical conjugation of antigen-binding fragments (Fabs) (bisFabs). Proteolytic digestion conditions for each IgG isotype were analyzed to optimize the yield and quality of the final conjugates. The resulting bisFabs showed no significant amounts of homodimers or aggregates. The predictive value of murine bisFabs was tested by comparing the T-cell redirected cytotoxic activity of a panel of antibodies in either the bisFab or full-length IgG formats. A variety of antigens with different structures and expression levels was used to extend the comparison to a wide range of binding geometries and antigen densities. The activity observed for different murine bisFabs correlated with those observed for the full-length IgG format across multiple different antigen targets, supporting the use of bisFabs as a screening tool. Our method may also be used for the screening of bispecific antibodies with other mechanisms of action, allowing for a more rapid selection of lead therapeutic candidates.  相似文献   

7.
Bispecific antibodies have shown promise in the clinic as medicines with novel mechanisms of action. Lack of efficient production of bispecific IgGs, however, has limited their rapid advancement. Here, we describe a single-reactor process using mammalian cell co-culture production to efficiently produce a bispecific IgG with 4 distinct polypeptide chains without the need for parallel processing of each half-antibody or additional framework mutations. This method resembles a conventional process, and the quality and yield of the monoclonal antibodies are equal to those produced using parallel processing methods. We demonstrate the application of the approach to diverse bispecific antibodies, and its suitability for production of a tissue specific molecule targeting fibroblast growth factor receptor 1 and klotho β that is being developed for type 2 diabetes and other obesity-linked disorders.  相似文献   

8.
BackgroundBispecific antibodies promise to broadly expand the clinical utility of monoclonal antibody technology. Several approaches for heterodimerization of heavy chains have been established to produce antibodies with two different Fab arms, but promiscuous pairing of heavy and light chains remains a challenge for their manufacturing.MethodsWe have designed a solution in which the CH1 and CL domain pair in one of the Fab fragments is replaced with a CH3-domain pair and heterodimerized to facilitate correct modified Fab-chain pairing in bispecific heterodimeric antibodies based on a strand-exchange engineered domain (SEED) scaffold with specificity for epithelial growth factor receptor and either CD3 or CD16 (FcγRIII).ResultsBispecific antibodies retained binding to their target antigens and redirected primary T cells or NK cells to induce potent killing of target cells. All antibodies were expressed at a high yield in Expi293F cells, were detected as single sharp symmetrical peaks in size exclusion chromatography and retained high thermostability. Mass spectrometric analysis revealed specific heavy-to-light chain pairing for the bispecific SEED antibodies as well as for one-armed SEED antibodies co-expressed with two different competing light chains.ConclusionIncorporation of a constant domain-exchanged Fab fragment into a SEED antibody yields functional molecules with favorable biophysical properties.General significanceOur results show that the novel engineered bispecific SEED antibody scaffold with an incorporated Fab fragment with CH3-exchanged constant domains is a promising tool for the generation of complete heterodimeric bispecific antibodies with correct light chain pairing.  相似文献   

9.
Bispecific antibodies and antibody fragments are a new class of therapeutics increasingly utilized in the clinic for T cell recruitment (catumaxomab anti-EpCAM/CD3 and blinatumomab anti-CD19/CD3), increase in the selectivity of targeting, or simultaneous modulation of multiple cellular pathways. While the clinical potential for certain bispecific antibody formats is clear, progress has been hindered because they are often difficult to manufacture, may suffer from suboptimal pharmacokinetic properties, and may be limited due to potential immunogenicity issues. Current state-of-the-art human IgG-like bispecific technologies require co-expression of two heavy chains with a single light chain, use crossover domains to segregate light chains, or utilize scFv (single-chain fragment variable)-Fc fusion. We have engineered both human IgG1 and IgG2 subtypes, with minimal point mutations, to form full-length bispecific human antibodies with high efficiency and in high purity. In our system, the two antibodies of interest can be expressed and purified separately, mixed together under appropriate redox conditions, resulting in a formation of a stable bispecific antibody with high yields. With this approach, it is not necessary to generate new antibodies that share a common light chain, therefore allowing the immediate use of an existing antibody regardless of whether it has been generated via standard hybridoma or display methods. We demonstrate the generality of the approach and show that these bispecific antibodies have properties similar to those of wild-type IgGs, and we further demonstrate the utility of the technology with an example of a CD3/CD20 bispecific antibody that effectively depletes B cells in vitro and in vivo.  相似文献   

10.
We developed an IgG1 domain-tethering approach to guide the correct assembly of 2 light and 2 heavy chains, derived from 2 different antibodies, to form bispecific monovalent antibodies in IgG1 format. We show here that assembling 2 different light and heavy chains by sequentially connecting them with protease-cleavable polypeptide linkers results in the generation of monovalent bispecific antibodies that have IgG1 sequence, structure and functional properties. This approach was used to generate a bispecific monovalent antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor that: 1) can be produced and purified using standard IgG1 techniques; 2) exhibits stability and structural features comparable to IgG1; 3) binds both targets simultaneously; and 4) has potent anti-tumor activity. Our strategy provides new engineering opportunities for bispecific antibody applications, and, most importantly, overcomes some of the limitations (e.g., half-antibody and homodimer formation, light chains mispairing, multi-step purification), inherent with some of the previously described IgG1-based bispecific monovalent antibodies.  相似文献   

11.
To improve recruitment and activation of natural killer (NK) cells to lyse tumor cells, we isolated a human anti-CD16A antibody with similar affinity for the CD16A 158F/V allotypes, but no binding to the CD16B isoform. Using CD16A-targeting Fv domains, we constructed a tetravalent bispecific CD30/CD16A tandem diabody (TandAb®) consisting solely of Fv domains. This TandAb has two binding sites for CD16A and two for CD30, the antigen identifying Hodgkin lymphoma cells. The binding and cytotoxicity of the TandAb were compared with antibodies with identical anti-CD30 domains: (1) a native IgG, (2) an IgG optimized for binding to Fc receptors, and (3) a bivalent bispecific CD30/CD16A diabody. Due to its CD16A-bivalency and reduced koff, the TandAb was retained longer on the surface of NK cells than the IgGs or the diabody. This contributed to the higher potency and efficacy of the TandAb relative to those of the other anti-CD30 antibodies. TandAb cytotoxicity was independent of the CD16A allotype, whereas the anti-CD30 IgGs were substantially less cytotoxic when NK cells with low affinity CD16A allotype were employed. TandAb activation of NK cells was strictly dependent on the presence of CD30+ target cells. Therefore, the CD30/CD16A TandAb may represent a promising therapeutic for the treatment of Hodgkin’s lymphoma; further, anti-CD16A TandAbs may function as potent immunotherapeutics that specifically recruit NK cells to destroy cancer cells.  相似文献   

12.
The major challenge in the generation of bispecific IgG antibodies is enforcement of the correct heavy and light chain association. The correct association of generic light chains can be enabled using immunoglobulin domain crossover, known as CrossMAb technology, which can be combined with approaches enabling correct heavy chain association such as knobs-into-holes (KiH) technology or electrostatic steering. Since its development, this technology has proven to be very versatile, allowing the generation of various bispecific antibody formats, not only heterodimeric/asymmetric bivalent 1+1 CrossMAbs, but also tri- (2+1), tetravalent (2+2) bispecific and multispecific antibodies. Numerous CrossMAbs have been evaluated in preclinical studies, and, so far, 4 different tailor-made bispecific antibodies based on the CrossMAb technology have entered clinical studies. Here, we review the properties and activities of bispecific CrossMAbs and give an overview of the variety of CrossMAb-enabled antibody formats that differ from heterodimeric 1+1 bispecific IgG antibodies.  相似文献   

13.
Both the epidermal growth factor receptor (EGFR) and the insulin-like growth factor receptor (IGFR) have been implicated in the tumorigenesis of a variety of cancers. Here we propose that simultaneous targeting of both receptors with a bispecific antibody would lead to enhanced antitumor activity. To this end, we produced a recombinant human IgG-like bispecific antibody, a Di-diabody, using the variable regions from two antagonistic antibodies: IMC-11F8 to EGFR and IMC-A12 to IGFR. The Di-diabody binds to both EGFR and IGFR and effectively blocked both EGF- and IGF-stimulated receptor activation and tumor cell proliferation. The Di-diabody also inherited the biological properties from both of its parent antibodies; it triggers rapid and significant IGFR internalization and degradation and mediates effective antibody-dependent cellular cytotoxicity in a variety of tumor cells. Finally, the Di-diabody strongly inhibited the growth of two different human tumor xenografts in vivo. Our results underscore the benefits of simultaneous targeting of two tumor targets with bispecific antibodies.  相似文献   

14.
In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.  相似文献   

15.
Among different cancer immunotherapy approaches, bispecific antibodies (BsAbs) are of great interest due to their ability to recruit immune cells to kill tumor cells directly. Various BsAbs against Her2 tumor cells have been proposed with potent cytotoxic activities. However, most of these formats require extensive processing to obtain heterodimeric bispecific antibodies. In this study, we describe a bispecific antibody, BiHC (bispecific Her2-CD3 antibody), constructed with a single-domain anti-Her2 and a single-chain Fv (variable fragment) of anti-CD3 in an IgG-like format. In contrast to most IgG-like BsAbs, the two arms in BiHC have different molecular weights, making it easier to separate hetero- or homodimers. BiHC can be expressed in Escherichia coli and purified via Protein A affinity chromatography. The purified BiHC can recruit T cells and induce specific cytotoxicity of Her2-expressing tumor cells in vitro. The BiHC can also efficiently inhibit the tumor growth in vivo. Thus, BiHC is a promising candidate for the treatment of Her2-positive cancers.  相似文献   

16.
《MABS-AUSTIN》2013,5(6):546-557
Bispecific antibodies based on full-length antibody structures are more optimal than fragment-based formats because they benefit from the favorable properties of the Fc region. However, the homodimeric nature of Fc effectively imposes bivalent binding on all current full-length bispecific antibodies, an attribute that can result in nonspecific activation of cross-linked receptors. We engineered a novel bispecific format, referred to as mAb-Fv, that utilizes a heterodimeric Fc region to enable monovalent co-engagement of a second target antigen in a full-length context. mAb-Fv constructs co-targeting CD16 and CD3 were expressed and purified as heterodimeric species, bound selectively to their co-target antigens, and mediated potent cytotoxic activity by NK cells and T cells, respectively. The capacity to co-engage distinct target antigens simultaneously with different valencies is an improved feature for bispecific antibodies with promising therapeutic implications.  相似文献   

17.
Polyvalent bispecific antibodies were secreted by hybrid hybridoma cells when both parental clones expressed a naturally polymerizing immunoglobulin. Hybrid hybridomas made from IgA lambda 2 anti-trinitrophenyl (TNP) and IgA kappa anti-phosphocholine (PC) parental cells secreted polymeric IgA antibodies that bound both TNP and PC. Some of the TNP binding was dissociated from the PC binding under conditions of mild reduction and alkylation suggesting that the bispecific polymeric IgA contained disulfide-linked parental monomers as well as bispecific hybrid monomers. Hybrid hybridomas constructed from IgA lambda 2 anti-TNP and IgM kappa anti-ox erythrocyte parental cells secreted bispecific, polymeric immunoglobulin that contained mu-, alpha-, kappa-, and lambda 2-chains. The mu and kappa-chains dissociated from the alpha- and lambda 2-chains under conditions of mild reduction and alkylation, indicating that both parental monomers had been incorporated into the same polymeric immunoglobulin to form a heteropolymeric antibody molecule. Heterologous pairing of alpha and mu heavy chains in monomers was not detected. Hybrid hybridomas constructed from IgA lambda 2 and IgG3 lambda 2 or IgA lambda 2 and IgG1 kappa parents co-secreted both parental immunoglobulins, but the antibodies secreted by these clones did not form heteropolymers or exhibit heterologous heavy chain pairing. These findings establish that polyvalent, bispecific, polymeric immunoglobulin molecules can be produced by hybrid hybridomas when both parents express a naturally polymerizing class of heavy chain but not when only one parent does. Hybrid hybridomas that produce heteropolymeric immunoglobulins are sources of high avidity bispecific antibodies that may find a number of basic and practical applications. The hybridoma cells that produce these antibodies may provide useful tools for investigating the in situ determinants of immunoglobulin chain association and the regulation of antibody assembly and secretion.  相似文献   

18.
To examine the nature of the factors influencing the galactosylation pattern of the heavy chain of murine immunoglobulin G (IgG), cell fusion was performed between a myeloma (P3x63Ag8) and a hybridoma (Sp2HL/Bu) cell line which secrete different IgGs possessing structurally distinct CH2-linked oligosaccharide moieties. The glycosylation patterns of the IgGs of the parental and fused cells were studied. Pronase digestion of the purified heavy chains and subsequent end labeling with fluorescein isothiocyanate produced fluoresceinated glycopeptides which were detected and purified by polyacrylamide gel electrophoresis. Structural information was obtained by enzymatic digestion, lectin affinity chromatography, and methylation analysis. IgGs from both parental lines possessed oligosaccharide units displaying microheterogeneity based upon a common symmetrical biantennary structure terminating in beta-GlcNAc. The structures of both IgGs, however, differed in the pattern of the mono- and digalactosylated components. Clones, selected following the fusion of the parental cells, were expanded; and the individual IgGs were purified. All clones produced homodimeric IgG1 and IgG2b as well as heterodimeric IgG possessing both the gamma 1 and gamma 2b heavy chains. Analysis of the carbohydrate moieties of the gamma 1 chain from the homodimeric and heterodimeric IgGs and of the gamma 2b chain from the heterodimeric molecule demonstrates that the polypeptide structure of the heavy chain influences the terminal galactosylation of the glycan unit at the conserved site of glycosylation of IgGs.  相似文献   

19.
Certain combinations of non-competitive anti-EGFR antibodies have been reported to produce new effects on cells compared to either antibody used separately. New and enhanced combination-activity includes increased inhibition of signaling, increased receptor internalization and degradation, reduced proliferation of tumor cell lines and induction of complement-dependent cytotoxicity (CDC) effector function. To test requirements and mechanisms to elicit enhanced combination-activity with different EGFR binding domains, we created an anti-EGFR biparatopic antibody. A biparatopic antibody interacts through two different antigen-binding sites to a single antigen. A heterodimeric antibody with one binding domain derived from the C225 antibody and one binding domain derived from the humanized 425 (hu425) antibody was built on the strand-exchange engineered domain (SEED) scaffold. This anti-EGFR biparatopic-SEED antibody was compared to parental antibodies used alone and in combination, and to the corresponding monovalent anti-EGFR-SEED antibodies used alone or in combination. We found that the anti-EGFR biparatopic-SEED had enhanced activity, similar to the combination of the two parental antibodies. Combinations of monovalent anti-EGFR-SEED antibodies did not produce enhanced effectiveness in cellular assays. Our results show that the anti-EGFR biparatopic antibody created using the SEED scaffold has enhanced combination-activity in a single molecule. Furthermore, these data suggest that the potential to cross-link the two different epitopes is an important requirement in the mechanism of enhanced combination-activity.  相似文献   

20.
Diabodies (Dbs) and tandem single-chain variable fragments (taFv) are the most widely used recombinant formats for constructing small bispecific antibodies. However, only a few studies have compared these formats, and none have discussed their binding kinetics and cross-linking ability. We previously reported the usefulness for cancer immunotherapy of a humanized bispecific Db (hEx3-Db) and its single-chain format (hEx3-scDb) that target epidermal growth factor receptor and CD3. Here, we converted hEx3-Db into a taFv format to investigate how format affects the function of a small bispecific antibody; our investigation included a cytotoxicity assay, surface plasmon resonance spectroscopy, thermodynamic analysis, and flow cytometry. The prepared taFv (hEx3-taFv) showed an enhanced cytotoxicity, which may be attributable to a structural superiority to the diabody format in cross-linking target cells but not to differences in the binding affinities of the formats. Comparable cross-linking ability for soluble antigens was observed among hEx3-Db, hEx3-scDb, and hEx3-taFv with surface plasmon resonance spectroscopy. Furthermore, drastic increases in cytotoxicity were found in the dimeric form of hEx3-taFv, especially when the two hEx3-taFv were covalently linked. Our results show that converting the format of small bispecific antibodies can improve their function. In particular, for small bispecific antibodies that target tumor and immune cells, a functional orientation that avoids steric hindrance in cross-linking two target cells may be important in enhancing the growth inhibition effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号