首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
【背景】单核细胞增生李斯特菌(Listeria monocytogenes,Lm)对一些临床常用抗生素、乳酸链球菌素(Nisin)等抗菌药物的敏感性下降,然而其背后的机制仍未完全阐明。【目的】调查转运蛋白VirAB在Lm对抗菌药物的耐药性及生物被膜形成中的作用。【方法】利用同源重组技术构建Lm基因缺失突变株,比较野生株和缺失株对抗菌药物的耐药性;利用微孔板法观测突变株生物被膜形成能力的变化;利用平板泳动法研究菌株的泳动能力。【结果】与野生株相比,virAB缺失突变株对头孢类抗生素、Nisin和溴化乙锭的敏感性增加;当培养基中分别添加亚致死浓度的苯扎氯铵、卡那霉素和四环素时,突变株均表现出不同程度的生长缺陷。缺失virAB后菌株形成生物被膜的能力下降。【结论】VirAB在Lm对头孢类等抗菌药物的耐药及生物被膜形成方面具有重要作用。  相似文献   

2.
甜菊愈伤组织分生区细胞中膜内含物的超微结构研究   总被引:1,自引:0,他引:1  
生长在分化培养基上的甜菊(Stevia rebaudiana)愈伤组织分生区细胞中存在双膜和多膜内含物。电镜观察表明,这些膜内含物是由一圈或多圈呈同民贺或卷绕状排列的内质网包围部分细胞质而形成的。双膜内含物内外层膜的靠细胞质表面有核糖体附着,而多膜内含物仅在其最外层潴泡的外膜上偶有和量核糖体附着。附着细胞液泡化程度的提高,多膜内含物通过液泡膜内陷而转移到液泡中或通过消化其中被包围的细胞质及内膜而转  相似文献   

3.
摘要:【目的】为保证超高压中性食品的杀菌强度,可以??????????通过添加Nisin等细菌素协同杀菌以达到商业无菌要求。本文从分子水平和超微结构揭示二者协同作用下的细胞致死机理,为超高压杀菌在中性食品中的应用奠定理论基础。【方法】采用pH7.0的环境体系,100-500 MPa的超高压处理,Nisin浓度为200 IU/mL。通过荧光染色法和紫外吸收法检测细胞膜通透性,傅里叶转换红外光谱法检测细菌细胞壁、蛋白以及核酸的变化,透射电镜观察细菌在协同作用下的形态变化。【结果】结果发现:中性条件下,超高压与  相似文献   

4.
厚壁毛竹快速高生长期竹秆ATP酶超微细胞化学定位   总被引:1,自引:0,他引:1  
采用电镜细胞化学技术对厚壁毛竹(Phyllostachys edulis ‘Pachyloen’)快速高生长期竹秆节间的伸长发育过程(包括:分生细胞期、伸长初期、快速伸长期和成熟期四个阶段)进行ATP酶超微细胞化学定位,以揭示竹秆节间快速伸长的细胞学基础。结果表明:分生细胞期,细胞质膜、核膜、细胞器膜系统上等均有很强的ATP酶活性。伸长初期,节间上部基本组织细胞质膜上ATP酶活性较强,且短细胞质膜上的ATP酶活性更强,节间基部各细胞均未观察到ATP酶活性。快速伸长期,节间基部基本组织ATP酶活性较节间上部高,细胞质膜、运输小泡膜、胞间隙及胞间连丝上均有ATP酶活性。成熟期,仅节间上部基本组织质膜上有较弱的ATP酶活性。ATP酶在节间伸长过程中主要参与新细胞壁物质的分泌和共质体运输,促进新细胞壁的形成,晶体和淀粉粒体外膜上ATP酶活性的存在表明其具有贮存物质的作用。节隔缺失节的节间基部未观察到ATP酶活性,节部韧皮结细胞ATP酶活性较高,节隔的缺失引起节部与节间与物质运输有关结构的变化,进而影响节间伸长生长。  相似文献   

5.
葡萄球菌核酸酶是金黄色葡萄球菌(Staphylococcusaureus)的一个重要毒力因子,它的生物学作用仍没有完全阐述清楚.本研究观察到金黄色葡萄球菌核酸酶产生菌株的生物被膜形成受到明显抑制.葡萄球菌核酸酶是由nucl基因编码,当nucl基因被敲除后,突变菌株生物被膜形成能力大大增加.扫描电子显微镜和激光共聚焦显微镜用于评价nucl基因在生物被膜形成中的作用.另外,nucl基因编码的产物——葡萄球菌核酸酶和NUCl重组蛋白对其他生物被膜形成细菌(铜绿假单胞菌(Pseudomonas aeruginosa)、猪胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae)和副猪嗜血杆菌(Haemophilus parasuis))同样有明显抑制作用.本研究表明,葡萄球菌核酸酶和生物被膜的形成之间有直接联系,并且葡萄球菌核酸酶起着抑制生物被膜形成的重要作用,为研究葡萄球菌核酸酶的生物学作用和理解葡萄球菌核酸酶抑制生物被膜形成提供理论依据.  相似文献   

6.
粘质沙雷氏菌Serratia marcescens PS-1菌株是从罹病黄曲条跳甲幼虫体内分离获得的病原菌,它对甜菜夜蛾Spodoptera exigua幼虫有显著的胃毒作用。为了明确PS-1菌株的杀虫机理,本文测定了甜菜夜蛾幼虫取食了含PS-1菌株的人工饲料后中肠蛋白酶和淀粉酶的活性,采用组织切片和透射电镜观察研究了甜菜夜蛾幼虫感染PS-1菌株后中肠肠壁细胞结构的变化。结果表明:甜菜夜蛾感染了PS-1菌株后,中肠蛋白酶和淀粉酶的比活力显著降低。对感染了PS-1菌株的甜菜夜蛾幼虫中肠的组织病理学研究发现,中肠整个围食膜被破坏消失;细胞明显伸长,变形;细胞间隙增大,细胞脱落。进一步的透射电镜观察发现中肠细胞的微绒毛脱落,内质网消失,细胞质空泡化。推测,粘质沙雷氏菌PS-1菌株对甜菜夜蛾幼虫的毒杀作用机制之一与消化酶活性抑制和中肠组织病变有关。  相似文献   

7.
箭舌豌豆根瘤液泡中细菌周膜来源的研究   总被引:3,自引:0,他引:3  
韩善华 《微生物学报》1995,35(5):381-385
电镜观察结果表明,幼龄箭舌豌豆根瘤侵染细胞的细胞质较少,中央是一些体积较大的液泡。细胞质中侵入线经常可见,由侵入线释放出来的细菌均有细菌周膜。这些细菌只位于细胞质中,不出现在液泡里面。成熟根瘤中的侵染细胞与此不同,它们中有大量的成熟侵染细胞,细胞质丰富,里面充满大量细菌,中央常有一个大液泡。当中央液泡发育到一定程度时,位于其附近的细菌可通过液泡膜内吞、液泡膜与细菌周膜融合及液泡膜破裂3种途径进入液泡,后一种途径常伴有寄主细胞质。液泡中的细菌绝大部分裸露在外,只有个别细菌具有细菌周膜且多位于液泡膜的破损处附近,因此细菌周膜可能是原来就有的。  相似文献   

8.
受番茄花叶病毒侵染后寄主的超微病变研究   总被引:9,自引:0,他引:9  
洪健  薛朝阳 《Acta Botanica Sinica》1999,41(12):1259-1263
电镜观察了番茄花叶病毒(ToMV)侵染不同寄主的细胞超微结构变化。在25℃下ToMV侵染番茄(LycopersiconesculentumMill)后,病毒粒子在叶片的表皮,薄壁细胞,维管束组织的细胞质中形成大块结晶体和类结晶体,液泡膜处产生小泡结构,有多泡体和髓鞘样结构构伸入液泡中,在25℃下ToMV侵染珊西烟(icotianatalacumL.cv.Xanthinn)后,除存在病毒结晶体和类结  相似文献   

9.
该研究对细胞生物学经典教学实验"细胞膜渗透性实验"进行重新设计.通过比较兔红细胞和盘基网柄菌细胞的"细胞膜渗透性"实验结果,配合细胞生物学"细胞质膜结构与功能"一章的教学,引导学生初步探究盘基网柄菌水孔蛋白(aquaporins,AQPs)在细胞抗低渗环境中的作用,加深理解细胞质膜中的功能蛋白对于细胞生存的重要意义.  相似文献   

10.
在人参(Panax ginsengC.A.Meyer)悬浮细胞质膜上测出了NAD(P)H氧化酶活性可以被金瓜炭疽细胞壁激发子(Cle)诱导,Cle处理还能诱导人参悬浮细胞的氧迸发,促进人参悬浮细胞的皂苷合成,提高苯丙氨酸解氨酶(PAL)的活力,以及诱导查尔式酮酶(CHS)的累积和细胞壁上抗性相关蛋白基因脯氨酸富裕蛋白基因hrgp(Hydroxyprolin-rich glycoproteins)的表达,当用哺乳动物白细胞质膜NADPH氧化酶的特异性抑制剂二精致苯基碘(Diphenylene iodonium,DPI)与奎吖因(quinacrine)预处理人参悬浮细胞30min后,Cle诱导的H2O2释放与Cle激活的质膜NAD(P)H氧化酶活性被抑制。同时Cle诱导的PAL活性及CHS的积累下降,皂苷合成与hrgp的表达被抑制。由此推测;人参细胞质膜NAD(P)H氧化酶与哺乳动物白细胞质膜NADPH氧化酶有很大的相似性,在Cle激发人参悬浮细胞产生氧迸发的过程中,NAD(P)H氧化酶活性被诱导从而导致H2O2的产生,H2O2作为第二信使,激活苯丙氨酸途径,诱发人参皂苷的合成及hrgp防御基因的表达,这一过程中还涉及到Ca^2 内流,胞内Ca^2 浓度的升高,蛋白磷酸化与去磷酸化。人参细胞质膜NAD(P)H氧化酶在人参细胞对Cle的反应过程中起一种介导作用。因此可能存在由Cle刺激,NAD(P)H氧化酶被诱导,H2O2释放,到人参细胞产生激发反应这样一个由外及内的级联反应。  相似文献   

11.
The outer core region of Helicobacter pylori lipopolysaccharide of the majority of isolates contains an alpha-1,6-glucan polymer synthesized by the product of the HP0159 ORF. Structural studies carried out on HP0159 lipopolysaccharide mutants by a combination of chemical methods, mass spectrometry and nuclear magnetic resonance spectroscopy confirmed that insertional inactivation of HP0159 gene in H. pylori strains 26695 and SS1 resulted in formation of a truncated lipopolysaccharide molecule characterized by the presence of a terminal dd-heptose residue in the side-chain outer core fragment and maintaining an inner core backbone structure compared with the wild-type Lewis antigen-expressing strains. Colonization studies with HP0159 mutants of two mouse-colonizing strains, SS1 and M6, confirmed their inability to successfully colonize the murine stomach.  相似文献   

12.
Smith TG  Lim JM  Weinberg MV  Wells L  Hoover TR 《Proteomics》2007,7(13):2240-2245
Helicobacter pylori extracellular proteins are of interest because of possible roles in pathogenesis, host recognition, and vaccine development. We utilized a unique approach by growing two strains (including one nonsequenced strain) in a defined serum-free medium and directly analyzing the proteins present in the culture supernatants by LC-MS/MS. Over 125 proteins were identified in the extracellular proteomes of two H. pylori strains. Forty-five of these proteins were enriched in the extracellular fraction when compared to soluble cell-associated protein samples. Our analysis confirmed and expanded on the previously reported H. pylori extracellular proteome. Extracellular proteins of interest identified here included cag pathogenicity island protein Cag24 (CagD); proteases HP0657 and HP1012; a polysaccharide deacetylase, HP0310, possibly involved in the hydrolysis of acetyl groups from host N-acetylglucosamine residues or from residues on the cell surface; and HP0953, an uncharacterized protein that appears to be restricted to Helicobacter species that colonize the gastric mucosa. In addition, our analysis found eight previously unidentified outer membrane proteins and two lipoproteins that could be important cell surface proteins.  相似文献   

13.
The antifungal activity and mechanism of HP (2-20), a peptide derived from the N-terminus sequence of Helicobacter pylori Ribosomal Protein L1 were investigated. HP (2--20) displayed a strong antifungal activity against various fungi, and the antifungal activity was inhibited by Ca(2+) and Mg(2+) ions. In order to investigate the antifungal mechanism(s) of HP (2-20), fluorescence activated flow cytometry was performed. As determined by propidium iodide staining, Candida albicans treated with HP (2-20) showed a higher fluorescence intensity than untreated cells and was similar to melittin-treated cells. The effect on fungal cell membranes was examined by investigating the change in membrane dynamics of C. albicans using 1,6-diphenyl-1,3,5-hexatriene as a membrane probe and by testing the membrane disrupting activity using liposome (PC/PS; 3:1, w/w) and by treating protoplasts of C. albicans with the peptide. The action of peptide against fungal cell membrane was further examined by the potassium-release test, and HP (2-20) was able to increase the amount of K(+) released from the cells. The result suggests that HP (2-20) may exert its antifungal activity by disrupting the structure of cell membrane via pore formation or directly interacts with the lipid bilayers in a salt-dependent manner.  相似文献   

14.
15.
AIMS: This project investigated the utility of HP selective medium to isolate H. pylori cells from seawater and from marine molluscs. METHODS AND RESULTS: Nested-PCR was performed to reveal the presence of Helicobacter genus. All samples were cultured in HP selective medium and 16 cultures were initially selected as putative Helicobacter. Helicobacter spp. DNA were detected in 9/16 cultures and three of them had 99-100% homology to H. pylori based on 16S RNA gene sequence. Helicobacter pylori isolation was unsuccessful. On the basis of 16S RNA gene sequences the contaminating organisms were shown to be Proteus mirabilis and Vibrio cholerae. CONCLUSIONS: These results indicate the coexistence of three predominant bacterial genera in the cultures and that HP selective medium can grow other enteric bacteria besides Helicobacter. Additional assays will improve the HP selective medium formulation for marine samples avoiding P. mirabilis and V. cholerae interferents. SIGNIFICANCE AND IMPACT OF THE STUDY: This work shows the effectiveness of the selective HP medium for the Helicobacter culture from marine samples.  相似文献   

16.
The fungicidal effects of the peptide HP (2-20). derived from the N-terminal sequence of Helicobacter pylori ribosomal protein L1 (RPL1). have been investigated. HP (2-20) displays a strong fungicidal activity against various fungi, without haemolytic activity against human erythrocyte cells, and the fungicidal activity is inhibited by Ca2+ and Mg2+ ions. In order to investigate the fungicidal mechanism(s) of HP (2-20). the amount of intracellular trehalose was measured in C. albicans. It was found that the amounts of intracellular trehalose were decreased when HP (2-20) was used. The action of the peptide against fungal cell membranes was further examined by the potassium-release test; HP (2-20) was found to increase the amount of K+ released from the cells. Furthermore, HP (2-20) caused significant morphological changes, as shown by scanning electron microscopy, and by testing the membrane disrupting activity using liposomes (phosphatidyl choline/cholesterol; 10: 1, w/w). Our results suggest that HP (2-20) may exert its antifungal activity by disrupting the structure of cell membranes, via pore formation or direct interaction with the lipid bilayers.  相似文献   

17.
Helicobacter pylori infects over half of the world's population and is thought to be a leading cause of gastric ulcer, gastric carcinoma, and gastric malignant lymphoma of mucosa-associated lymphoid tissue type. Previously, we reported that a gland mucin (MUC6) present in the lower portion of the gastric mucosa containing alpha1,4-N-acetylglucosamine (alpha1,4GlcNAc)-capped core 2-branched O-glycans suppresses H. pylori growth by inhibiting the synthesis of alpha-glucosyl cholesterol, a major constituent of the H. pylori cell wall (Kawakubo et al. 2004. Science. 305:1003-1006). Therefore, we cloned the genomic DNA encoding cholesterol alpha-glucosyltransferase (HP0421) and expressed its soluble form in Escherichia coli. Using this soluble HP0421, we show herein that HP0421 sequentially acts on uridine diphosphoglucose and cholesterol in an ordered Bi-Bi manner. We found that competitive inhibition of HP0421 by alpha1,4GlcNAc-capped core 2-branched O-glycan is much more efficient than noncompetitive inhibition by newly synthesized alpha-glucosyl cholesterol. Utilizing synthetic oligosaccharides, alpha-glucosyl cholesterol, and monosaccharides, we found that alpha1,4GlcNAc-capped core 2-branched O-glycan most efficiently inhibits H. pylori growth. These findings together indicate that alpha1,4GlcNAc-capped O-glycans suppress H. pylori growth by inhibiting HP0421, and that alpha1,4GlcNAc-capped core 2 O-glycans may be useful to treat patients infected with H. pylori.  相似文献   

18.
We have identified a Helicobacter pylori d-glycero-d-manno-heptosyltransferase gene, HP0479, which is involved in the biosynthesis of the outer core region of H. pylori lipopolysaccharide (LPS). Insertional inactivation of HP0479 resulted in formation of a truncated LPS molecule lacking an alpha-1,6-glucan-, dd-heptose-containing outer core region and O-chain polysaccharide. Detailed structural analysis of purified LPS from HP0479 mutants of strains SS1, 26695, O:3, and PJ1 by a combination of chemical and mass spectrometric methods showed that HP0479 likely encodes alpha-1,2-d-glycero-d-manno-heptosyltransferase, which adds a d-glycero-d-manno-heptose residue (DDHepII) to a distal dd-heptose of the core oligosaccharide backbone of H. pylori LPS. When the wild-type HP0479 gene was reintegrated into the chromosome of strain 26695 by using an "antibiotic cassette swapping" method, the complete LPS structure was restored. Introduction of the HP0479 mutation into the H. pylori mouse-colonizing Sydney (SS1) strain and the clinical isolate PJ1, which expresses dd-heptoglycan, resulted in the loss of colonization in a mouse model. This indicates that H. pylori expressing a deeply truncated LPS is unable to successfully colonize the murine stomach and provides evidence for a critical role of the outer core region of H. pylori LPS in colonization.  相似文献   

19.
Helicobacter pylori is naturally competent for DNA transformation, but the mechanism by which transformation occurs is not known. For Haemophilus influenzae, dprA is required for transformation by chromosomal but not plasmid DNA, and the complete genomic sequence of H. pylori 26695 revealed a dprA homolog (HP0333). Examination of genetic databases indicates that DprA homologs are present in a wide variety of bacterial species. To examine whether HP0333 has a function similar to dprA of H. influenzae, HP0333, present in each of 11 strains studied, was disrupted in two H. pylori isolates. For both mutants, the frequency of transformation by H. pylori chromosomal DNA was markedly reduced, but not eliminated, compared to their wild-type parental strains. Mutation of HP0333 also resulted in a marked decrease in transformation frequency by a shuttle plasmid (pHP1), which differs from the phenotype described in H. influenzae. Complementation of the mutant with HP0333 inserted in trans in the chromosomal ureAB locus completely restored the frequency of transformation to that of the wild-type strain. Thus, while dprA is required for high-frequency transformation, transformation also may occur independently of DprA. The presence of DprA homologs in bacteria known not to be naturally competent suggests a broad function in DNA processing.  相似文献   

20.
HP0495 (Swiss-Prot ID; Y495_HELPY) is an 86-residue hypothetical protein from Helicobacter pylori strain 26695. The function of HP0495 cannot be identified based on sequence homology, and HP0495 is included in a fairly unique sequence family. Here, we report the sequence-specific backbone resonance assignments of HP0495. About 97% of all the 1HN, 15N, 13Calpha, 13Cbeta, and 13CO resonances were assigned unambiguously. We could predict the secondary structure of HP0495, by analyzing the deviation of the 13Calpha and 13Cbeta shemical shifts from their respective random coil values. Secondary structure prediction shows that HP0495 consists of two alpha-helices and four beta-strands. This study is a prerequisite for determining the solution structure of HP0495 and investigating the protein-protein interaction between HP0495 and other Helicobacter pylori proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号