首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The segmentation gene hierarchy of Drosophila melanogaster represents one of the best understood of the gene networks that generate pattern during embryogenesis. Some components of this network are ancient, while other parts of the network have evolved within the higher Diptera. To further understand the evolution of this gene network, we are studying the role of gap genes in a representative of a basally diverging dipteran lineage, the moth midge Clogmia albipunctata. We have isolated orthologues of all of the Drosophila trunk gap genes from Clogmia, and determined their domains of expression during the blastoderm stage of development, in relation to one another, and in relation to the expression of even-skipped (Calb-eve), a component of the pair-rule system that is directly regulated by the gap genes in Drosophila. We find that hunchback (Calb-hb), Krüppel (Calb-Kr), knirps (Calb-knl), giant (Calb-gt) and tailless (Calb-tll) are all expressed in patterns consistent with a gap segmentation role during blastoderm formation, but huckebein (Calb-hkb) is not. In the anterior half of the embryo, the relative positions of the gap gene expression domains in relation to one another, and in relation to the eve stripes, are rather well conserved. In the posterior half of the embryo, there are significant differences. Posteriorly, Calb-gt is expressed only transiently and very weakly, in a domain that overlaps entirely with that of Calb-knl. At late blastoderm stages, none of the candidate genes we have tested is expressed in the region between the posterior Calb-knl domain and Calb-tll. It is likely that the regulation of Calb-eve expression in this posterior region depends on combinations of gap gene factors that differ from those utilised for the same stripes in Drosophila. Both the gap and the pair-rule patterns of gene expression are dynamic in Clogmia, as they are in Drosophila, shifting anteriorly as blastoderm development proceeds.  相似文献   

2.
 We have studied the binding pattern of antibody mAB 2B8 directed against even-skipped orthologous proteins (EVE) in honeybee embryos. Primary and secondary EVE stripes form in roughly anterior-to-posterior succession; there are 8 primary and 16 secondary stripes. The most posterior primary stripes appear only after the onset of gastrulation. The secondary stripes form by a splitting of primary stripes; they demarcate the parasegmental pattern. While these findings resemble EVE expression in long-germ beetles, the honeybee differs from both beetles and dipterans by two transient pair-rule traits in the parasegmental EVE pattern: the secondary stripes in head and thorax alternate in strength, yet out of register with the Drosophila pattern, and over the whole pattern the odd-numbered stripes vanish earlier than their even-numbered counterparts. As in Drosophila, however, the strong EVE stripes coincide with the weak engrailed (EN) stripes. These findings are taken to indicate that (1) honeybee and beetles share a conserved mode of EVE stripe formation whilst Drosophila has diverged in this respect, (2) honeybee and Drosophila have diverged from the beetles in specific pair-rule traits during the parasegmental expression of both EVE and EN, and (3) some of these traits differ in the register of segment pairing and thus may reflect regulatory divergences at the pair-rule level between dipterans and the honeybee.  相似文献   

3.
Segmentation, i.e. the subdivision of the body into serially homologous units, is one of the hallmarks of the arthropods. Arthropod segmentation is best understood in the fly Drosophila melanogaster. But different from the situation in most arthropods in this species all segments are formed from the early blastoderm (so called long-germ developmental mode). In most other arthropods only the anterior segments are formed in a similar way (so called short-germ developmental mode). Posterior segments are added one at a time or in pairs of two from a posterior segment addition zone. The segmentation mechanisms are not universally conserved among arthropods and only little is known about the genetic patterning of the anterior segments. Here we present the expression patterns of the insect head patterning gene orthologs hunchback (hb), orthodenticle (otd), buttonhead-like (btdl), collier (col), cap-n-collar (cnc) and crocodile (croc), and the trunk gap gene Krüppel (Kr) in the myriapod Glomeris marginata. Conserved expression of these genes in insects and a myriapod suggests that the anterior segmentation system may be conserved in at least these two classes of arthropods. This finding implies that the anterior patterning mechanism already existed in the last common ancestor of insects and myriapods.  相似文献   

4.
Pattern formation in Drosophila embryogenesis has been widely investigated as a developmental and evolutionary model of robustness. To ask whether genetic variation for pattern formation is suppressed in this system, artificial selection for divergent egg size was used to challenge the scaling of even‐skipped (eve) pattern formation in mitotic cycle 14 (stage 5) embryos of Drosophila melanogaster. Three‐dimensional confocal imaging revealed shifts in the allometry of eve pair‐rule stripes along both anterior–posterior (A–P) and dorsoventral (D–V) axes as a correlated response to egg size selection, indicating the availability of genetic variation for this buffered trait. Environmental perturbation was not required for the manifestation of this variation. The number of nuclei at the cellular blastoderm stage also changed in response to selection, with large‐egg selected lines having more than 1000 additional nuclei relative to small‐egg lines. This increase in nuclear number in larger eggs does not scale with egg size, however, as nuclear density is inversely correlated with egg length. Nuclear density varies along the A–P axis but does not correlate with the shift in eve stripe allometry between the selection treatments. Despite its macroevolutionary conservation, both eve stripe patterning and blastoderm cell number vary genetically both within and between closely related species.  相似文献   

5.
We are interested in identifying the regulatory genes involved in segmental pattern formation in annelids. The Drosophila segmentation gene hunchback (hb) is critical for the proper anteroposterior development of the fly embryo, but its function outside the diptera is currently unknown. Here, the protein expression pattern of Leech Zinc Finger II (LZF2), a leech orthologue of hb is characterized. In early embryogenesis, LZF2 protein is expressed in a subset of micromeres and is later expressed in the micromere-derived epithelium of the provisional epithelium and prostomium. LZF2 protein is detected in the ventral nerve cord during organogenesis, first in interganglionic muscle cells and later in subsets of neurons in each neuromere of the CNS. The location of immunoreactive cells during development and the similarity of the expression pattern of LZF2 to the expression of the Caenhorhabditis elegans hb homologue hbl-1 suggests that LZF2 plays a role in the morphogenetic movements of leech gastrulation and later in CNS specification but not in anteroposterior pattern formation. Received: 28 May 1999 / Accepted: 21 December 1999  相似文献   

6.
In Drosophila, gap genes translate positional information from gradients of maternal coordinate activity and act to position the periodic patterns of pair-rule gene stripes across broad domains of the embryo. In holometabolous insects, maternal coordinate genes are fast-evolving, the domains that gap genes specify often differ from their orthologues in Drosophila while the expression of pair-rule genes is more conserved. This implies that gap genes may buffer the fast-evolving maternal coordinate genes to give a more conserved pair-rule output. To test this idea, we have examined the function and expression of three honeybee orthologues of gap genes, Krüppel, caudal, and giant. In honeybees, where many Drosophila maternal coordinate genes are missing, these three gap genes have more extensive domains of expression and activity than in other insects. Unusually, honeybee caudal mRNA is initially localized to the anterior of the oocyte and embryo, yet it has no discernible function in that domain. We have also examined the influence of these three genes on the expression of honeybee even-skipped and a honeybee orthologue of engrailed and show that the way that these genes influence segmental patterning differs from Drosophila. We conclude that while the fundamental function of these gap genes is conserved in the honeybee, shifts in their expression and function have occurred, perhaps due to the apparently different maternal patterning systems in this insect.  相似文献   

7.
The expression of most Drosophila segmentation genes is not limited to the early blastoderm stage, when the segmental anlagen are determined. Rather, these genes are often expressed in a variety of organs and tissues at later stages of development. In contrast to the early expression, little is known about the regulatory interactions that govern the later expression patterns. Among other tissues, the central gap gene Krüppel is expressed and required in the anlage of the Malpighian tubules at the posterior terminus of the embryo. We have studied the interaction of Krüppel with other terminal genes. The gap genes tailles and huckebein, which repress Krüppel in the central segmentation domain, activate Krüppel expression in the posterior Malpighian tubule domain. The opposite effect on the posterior Krüppel expression is achieved by the interposition of another factor, the homeotic gene fork head, which is not involved in the control of the central domain. In addition, Krüppel activates different genes in the Malpighian tubules than in the central domain. Thus, both the regulation and the function of Krüppel in the Malpighian tubules differ strikingly from its role in segmentation.  相似文献   

8.
hb (hunchback) is a contributing factor in anteroposterior axial patterning of insects. Although the hb function in Locusta migratoria manilensis has been investigated, its expression pattern remains unknown. Here, the mouse polyclonal antibody was produced against Hb fusion protein, and then its expression pattern during oogenesis and embryogenesis of L. migratoria manilensis was examined by immunohistochemical staining. Hb protein was detected in the oocyte nucleus which was positioned centrally within the developing oocyte. The oocyte nucleus gradually moved to the posterior end of the egg along with the oocyte maturing. In freshly laid eggs, Hb formed gradient at the posterior end of the egg, and then hb was expressed as a band in the middle of the blastodisc. As the blastodisc differentiated into the head and trunk, the expression region became wide, which would develop into spatial gnathal and thoracic segments. With abdominal segmentation, the expression domain in the gnathal and thoracic region became faint and eventually faded out, while the Hb expression domain appeared at the posterior growth zone in a discontinuous expression manner. The hb expression pattern of L. migratoria manilensis is greatly similar to that of other locusts, such as Schistocerca americana and another L. migratoria. Compared with other insects, hb expression is conserved in the gnathal and thoracic domains, while divergent in oogenesis and abdomen.  相似文献   

9.
Molecular evolution is an established technique for inferring gene homology but regulatory DNA turns over so rapidly that inference of ancestral networks is often impossible. In silico evolution is used to compute the most parsimonious path in regulatory space for anterior-posterior patterning linking two Dipterian species. The expression pattern of gap genes has evolved between Drosophila (fly) and Anopheles (mosquito), yet one of their targets, eve, has remained invariant. Our model predicts that stripe 5 in fly disappears and a new posterior stripe is created in mosquito, thus eve stripe modules 3+7 and 4+6 in fly are homologous to 3+6 and 4+5 in mosquito. We can place Clogmia on this evolutionary pathway and it shares the mosquito homologies. To account for the evolution of the other pair-rule genes in the posterior we have to assume that the ancestral Dipterian utilized a dynamic method to phase those genes in relation to eve.  相似文献   

10.
Sibling neurons in the embryonic central nervous system (CNS) of Drosophila can adopt distinct states as judged by gene expression and axon projection. In the NB4-2 lineage, two even-skipped (eve)-expressing sibling neuronal cells, RP2 and RP2sib, are formed in each hemineuromere. Throughout embryogenesis, only RP2, but not RP2sib, maintains eve expression. In this report, we describe a P-element induced mutation that alters the expression pattern of EVE in RP2 motoneurons in the Drosophila embryonic CNS. The mutation was mapped to a Drosophila homolog of human AF10/AF17 leukemia fusion genes (alf), and therefore named Dalf. Like its human counterparts, Dalf encodes a zinc finger/leucine zipper nuclear protein that is widely expressed in embryonic and larval tissues including neurons and glia. In Dalf mutant embryos, the RP2 motoneuron no longer maintains EVE expression. The effect of the Dalf mutation on EVE expression is RP2-specific and does not affect other characteristics of the RP2 motoneuron. In addition to the embryonic phenotype, Dalf mutant larvae are retarded in their growth and this defect can be rescued by the ectopic expression of a Dalf transgene under the control of a neuronal GAL4 driver. This indicates a requirement for Dalf function in the nervous system for maintaining gene expression and the facilitation of normal growth.  相似文献   

11.
12.
Comparative studies have shown that some aspects of segmentation are widely conserved among arthropods. Yet, it is still unclear whether the molecular prepatterns that are required for segmentation in Drosophila are likely to be similarly conserved in other arthropod groups. Homologues of the Drosophila gap genes, like hunchback, show regionally restricted expression patterns during the early phases of segmentation in diverse insects, but their expression patterns in other arthropod groups are not yet known. Here, we report the cloning of a hunchback orthologue from the crustacean Artemia franciscana and its expression during the formation of trunk segments. Artemia hunchback is expressed in a series of segmental stripes that correspond to individual thoracic/trunk, genital, and postgenital segments. However, this expression is not associated with the segmenting ectoderm but is restricted to mesodermal cells that associate with the ectoderm in a regular metameric pattern. All cells in the early segmental mesoderm appear to express hunchback. Later, mesodermal expression fades, and a complex expression pattern appears in the central nervous system (CNS), which is comparable to hunchback expression in the CNS of insects. No regionally restricted expression, reminiscent of gap gene expression, is observed during trunk segmentation. These patterns suggest that the expression patterns of hunchback in the mesoderm and in the CNS are likely to be ancient and conserved among crustaceans and insects. In contrast, we find no evidence for a conserved role of hunchback in axial patterning in the trunk ectoderm.  相似文献   

13.
Mutations in severalPolycomb (Pc) group genes cause maternal-effect or zygotic segmentation defects, suggesting thatPc group genes may regulate the segmentation genes ofDrosophila. We show that individuals doubly heterozygous for mutations inpolyhomeotic and six otherPc group genes show gap, pair rule, and segment polarity segmentation defects. We examined double heterozygous combinations ofPc group and segmentation mutations for enhancement of adult and embryonic segmentation defects.Posterior sex combs andpolyhomeotic interact withKrüppel 2 and enhance embryonic phenotypes ofhunchback andknirps, andpolyhomeotic enhanceseven-skipped. Surprisingly, flies carrying duplications ofextra sex combs (esc), that were heterozygous for mutations ofeven-skipped (eve), were extremely subvital. Embryos and surviving adults of this genotype showed strong segmentation defects in even-numbered segments. Antibody studies confirm that expression ofeve is suppressed by duplications ofesc. However,esc duplications have no effect on other gap or pair rule genes tested. To our knowledge, this is only the second triplo-abnormal phenotype associated withPc group genes. Duplications of nine otherPc group genes have no detectable effect oneve. Expression ofengrailed (en) was abnormal in the central nervous systems of mostPc group mutants. These results support a role forPc genes in regulation of some segmentation genes, and suggest thatesc may act differently from otherPc group genes.  相似文献   

14.
The question of the degree of evolutionary conservation of the pair-rule patterning mechanism known from Drosophila is still contentious. We have employed chromophore-assisted laser inactivation (CALI) to inactivate the function of the pair-rule gene even skipped (eve) in the short germ embryo of the flour beetle Tribolium. We show that it is possible to generate pair-rule type phenocopies with defects in alternating segments. Interestingly, we find the defects in odd numbered segments and not in even numbered ones as in Drosophila. However, this apparent discrepancy can be explained if one takes into account that the primary action of eve is at the level of parasegments and that different cuticular markers are used for defining the segment borders in the two species. In this light, we find that eve appears to be required for the formation of the anterior borders of the same odd numbered parasegments in both species. We conclude that the primary function of eve as a pair rule gene is conserved between the two species.  相似文献   

15.
Mutations in severalPolycomb (Pc) group genes cause maternal-effect or zygotic segmentation defects, suggesting thatPc group genes may regulate the segmentation genes ofDrosophila. We show that individuals doubly heterozygous for mutations inpolyhomeotic and six otherPc group genes show gap, pair rule, and segment polarity segmentation defects. We examined double heterozygous combinations ofPc group and segmentation mutations for enhancement of adult and embryonic segmentation defects.Posterior sex combs andpolyhomeotic interact withKrüppel 2 and enhance embryonic phenotypes ofhunchback andknirps, andpolyhomeotic enhanceseven-skipped. Surprisingly, flies carrying duplications ofextra sex combs (esc), that were heterozygous for mutations ofeven-skipped (eve), were extremely subvital. Embryos and surviving adults of this genotype showed strong segmentation defects in even-numbered segments. Antibody studies confirm that expression ofeve is suppressed by duplications ofesc. However,esc duplications have no effect on other gap or pair rule genes tested. To our knowledge, this is only the second triplo-abnormal phenotype associated withPc group genes. Duplications of nine otherPc group genes have no detectable effect oneve. Expression ofengrailed (en) was abnormal in the central nervous systems of mostPc group mutants. These results support a role forPc genes in regulation of some segmentation genes, and suggest thatesc may act differently from otherPc group genes.  相似文献   

16.
17.
18.
Embryogenesis in the beetle Tribolium is of increasing interest to both molecular and evolutionary biology because it differs from the Drosophila paradigm by its type of segment specification (short- vs. long-germ) and by the extensive epithelial envelopes – amnion and serosa – that are typical of most insects but not of higher dipterans. Using scanning electron microscopy of DAPI staged embryos we document development in Tribolium castaneum from blastoderm to completion of the envelopes, recording many details not otherwise accessible; we also provide a time table of the respective stages at 30°C. The nascent blastoderm cells remain basally confluent with the yolksac until after the 13th (=last synchronous) mitotic cycle. The cells in the prospective serosa – the first domain to segregate visibly from the uniform blastoderm – carry surface protrusions likely to contact the overlying vitelline envelope. The embryonic rudiment, the other (and larger) blastodermal domain, gives rise to amnion and germ anlage. In the latter, visible differentiation begins with a ”primitive pit” reminiscent of the posterior midgut rudiment of Drosophila. The subsequent invagination of the mesoderm resembles Drosophila gastrulation, except in the head region where the median groove extends through the entire preoral region. The prospective amnion starts differing visibly from the germ anlage during early gastrulation. It then folds underneath the spreading serosa and, advancing with the latter, closes the amniotic cavity at the ventral face of the germband. The largest (=posterior) amniotic fold covers a crestlike protrusion of the yolksac. Together with marked changes in the shape and arrangement of the amnion cells, this protrusion may contribute to the fold’s elevation and early progress. Received: 12 August 1999 / Accepted: 4 November 1999  相似文献   

19.
 During embryogenesis of the fruit fly, Drosophila melanogaster, the homeotic genes are required to specify proper cell fates along the anterior-posterior axis of the embryo. We cloned partial cDNAs of homologues of the Drosophila homeotic gene teashirt and five of the homeotic-complex (HOM-C) genes from the thysanuran insect, Thermobia domestica, and assayed their embryonic expression patterns. The HOM-C genes we examined were labial, Antennapedia, Ultrabithorax, abdominal-A and Abdominal-B. As the expression pattern of these HOM-C genes is largely conserved among insects and as Thermobia is a member of a phylogenetically basal order of insects, we were able to infer their ancestral expression patterns in insects. We compare the expression patterns of the Thermobia HOM-C genes with their expression in Drosophila and other insects and discuss the potential roles these genes may have played in insect evolution. Interestingly, the teashirt homologue shows greater variability between Thermobia and Drosophila than any of the HOM-C genes. In particular, teashirt is not expressed strongly in the Thermobia abdomen, unlike Drosophila teashirt. We propose that teashirt expression has expanded posteriorly in Drosophila and contributed to a homogenization of the Drosophila larval thorax and abdomen. Received: 23 July 1998 / Accepted: 1 November 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号