共查询到10条相似文献,搜索用时 31 毫秒
1.
The vegetation within the riparian zone performs animportant ecological function for in-stream processes.In Australia, riparian zones are regarded as the mostdegraded natural resource zone due to disturbancessuch as river regulation and livestock grazing. Thisstudy looks at factors influencing vegetation dynamicsof riparian tree species on two contrasting riversystems in Western Australia. The Blackwood River insouth-western Australia is influenced by aMediterranean type climate with regular seasonalwinter flows. The Ord River in north-western Australiais characterized by low winter base flows andepisodic, extreme flows influenced by monsoon rains inthe summer. For both rivers, reproductive phenology ofstudied overstory species is timed to coincide withseasonal river hydrology and rainfall. An evendistribution of size classes of trees on the BlackwoodRiver indicated recruitment into the population iscontinual and related to the regular predictableseasonal river flows and rainfall. In contrast, on theOrd River tree size class distribution was clustered,indicating episodic recruitment. On both rivers treeestablishment is also influenced by elevation abovethe river, microtopography, moisture status and soiltype. In terms of vegetation dynamics riparianvegetation on the Ord River consists of long periodsof transition with short lived stable states incontrast to the Blackwood river where tree populationstructure is characterized by long periods of stablestates with short transitions. 相似文献
2.
Riparian revegetation, such as planting woody seedlings or live stakes, is a nearly ubiquitous component of stream restoration projects in the United States. Though evaluations of restoration success usually focus on in‐stream ecosystems, in order to understand the full impacts of restoration the effects on riparian ecosystems themselves must be considered. We examined the effects of stream restoration revegetation measures on riparian ecosystems of headwater mountain streams in forested watersheds by comparing riparian vegetation structure and composition at reference, restored, and degraded sites on nine streams. According to mixed model analysis of variance (ANOVA), there was a significant effect of site treatment on riparian species richness, basal area, and canopy cover, but no effect on stem density. Vegetation characteristics at restored sites differed from those of reference sites according to all metrics (i.e. basal area, canopy cover, and species composition) except species richness and stem density. Restored and degraded sites were structurally similar, with some overlap in species composition. Restored sites were dominated by Salix sericea and Cornus amomum (species commonly planted for revegetation) and a suite of disturbance‐adapted species also dominant at degraded sites. Differences between reference and restored sites might be due to the young age of restored sites (average 4 years since restoration), to reassembly of degraded site species composition at restored sites, or to the creation of a novel anthropogenic ecosystem on these headwater streams. Additional research is needed to determine if this anthropogenic riparian community type persists as a resilient novel ecosystem and provides valued riparian functions. 相似文献
3.
R. Niloshini Sinnatamby Bernhard Mayer Mary K. Kruk Stewart B. Rood Anne Farineau John R. Post 《Ecohydrology》2020,13(5)
Rivers are among the most altered environments globally, but identifying which threats are responsible for observed biotic and abiotic changes is complicated by natural drivers of variation. The Bow River, Canada provides an ideal model to resolve these influences and explore spatial relationships. It originates from pristine Rocky Mountain headwaters and is subsequently impacted by typical human alterations: damming, municipal channelization and effluent release, and agricultural impacts (nutrient enrichment and water withdrawal for irrigation). By coordinating studies of the Bow River's biota, we demonstrate how threat–driver interactions depend on season and the abiotic factor and biotic community or species of interest. We conclude that impact severity and riverine recovery depend on the threat magnitude, its longitudinal position and proximity to other threats and natural drivers. We found that river regulation, water extraction and bank armouring interact to limit geomorphic processes resulting in depleted riparian woodlands and numbers of fish species, though a large, undammed tributary nearby allows quick recovery downstream. We highlight the implications of the longitudinal position of the threats because cold‐water fish species are disproportionately impacted through the area where the human impacts on the Bow River overlap. We illustrate how the interactions between flow, nutrients and temperature lead to macrophyte‐ or algae‐dominated communities and associated shifts in fish composition and biomass. Finally, we applied our increased understanding of ecological riverine processes to conclude that management techniques such as flushing flows or functional environmental flows are likely to have only minimal or conditional success in the Bow River. 相似文献
4.
1. The hydrological regime is important to the distribution of benthic organisms in streams. The objective of this study was to identify relationships between hydrological variables, describing the flow regime, and macrophyte cover, species richness, diversity and community composition in Danish lowland streams.
2. We quantified macrophyte vegetation in 44 Danish streams during summer by cover, species richness and diversity. Flow regime was characterized by 18 non-intercorrelated variables describing magnitude, frequency and duration of low and high flow events, timing or predictability of flow and general flow variability.
3. We found support in the stepwise multiple regressions analysis for our expectation that macrophyte cover is lowest in streams with high flow variability and highest in streams with long duration of low flow and low flow variability. We found support for the intermediate disturbance hypothesis as there were significant quadratic relationships between species richness and diversity as functions of disturbance frequency. There was poor discrimination in a detrended correspondence analysis (DCA) analysis of macrophyte community composition between four twinspan groups separating streams with different hydrological properties. Moreover, we did not find any relationship between the presence of disturbance-tolerant species and hydrological disturbance, suggesting that plant community composition developed independently of stream hydrology. 相似文献
2. We quantified macrophyte vegetation in 44 Danish streams during summer by cover, species richness and diversity. Flow regime was characterized by 18 non-intercorrelated variables describing magnitude, frequency and duration of low and high flow events, timing or predictability of flow and general flow variability.
3. We found support in the stepwise multiple regressions analysis for our expectation that macrophyte cover is lowest in streams with high flow variability and highest in streams with long duration of low flow and low flow variability. We found support for the intermediate disturbance hypothesis as there were significant quadratic relationships between species richness and diversity as functions of disturbance frequency. There was poor discrimination in a detrended correspondence analysis (DCA) analysis of macrophyte community composition between four twinspan groups separating streams with different hydrological properties. Moreover, we did not find any relationship between the presence of disturbance-tolerant species and hydrological disturbance, suggesting that plant community composition developed independently of stream hydrology. 相似文献
5.
ANITA C. CHALMERS WAYNE D. ERSKINE ANNABELLE F. KEENE RICHARD T. BUSH 《Austral ecology》2012,37(2):193-203
A survey of fluvial landforms was conducted at Widden Brook, an unregulated sand‐bed stream in the Hunter Valley, New South Wales (NSW), Australia, to investigate the physical factors associated with vegetation pattern in Riverine Oak Forest. Groundwater depth and chemistry (pH, dissolved oxygen and electrical conductivity) were measured using piezometers and submersible data loggers on three fluvial landforms (i.e. toe of bank, top of bank and floodplain) along five transects. Floristic composition, canopy cover, bare ground and leaf litter were assessed within 45 quadrats on the three landforms along the five transects. Elevation above the bed and flood return period were determined by cross‐sectional survey and flood frequency analysis, while flow duration was determined from the gauge record. Canonical correspondence analysis demonstrated that vegetation composition was associated with average watertable depth and flood variables to a similar extent. The relative importance of these factors would be expected to vary with flood‐ and drought‐dominated climatic periods on a scale of several decades. Floristic composition was moderately associated with the canopy cover of the dominant woody species, Casuarina cunninghamiana (Miq.), but weakly correlated with bare ground and groundwater chemistry. Suites of species were associated with particular fluvial landforms and their corresponding flood and watertable conditions. The reach examined has characteristics similar to both the semi‐arid and mesic riparian ecosystems of the USA. The coarse sediments, high flood variability, short flood duration and dominance by a pioneer tree that relies on groundwater are similar to riparian ecosystems in the western USA, while the relatively broad floodplain and the development of a forest canopy that is associated with the distribution of understorey plants are similar to the mesic riparian systems in the eastern USA. 相似文献
6.
1. Differing responses in riparian species richness and composition to disturbance have been reported as a possible explanation for the differences along and between rivers. This paper explores the role of physical disturbance in shaping landscape‐scale patterns of species distribution in riparian vegetation along a free‐flowing river in northern Sweden. 2. To test whether sensitivity to disturbance varies across large landscapes, we experimentally disturbed riparian vegetation along an entire, free‐flowing river by scouring the soil and the vegetation turf, cutting vegetation, applying waterborne plant litter, and after a period of recovery we measured vegetation responses. The experiment was repeated for two consecutive years. 3. We found no significant effect of disturbance on species composition, but all three forms of disturbance significantly reduced species richness. There was no downstream variation in community responses to disturbance but morphological groups of species responded differently to different kinds of disturbance. Graminoids were most resistant, suppressed only by litter burial. All forms of disturbance except cutting reduced the density of herbaceous species, and species density of trees + shrubs and dwarf shrubs was negatively affected by both scouring and cutting. We also evaluated the effects of disturbance in relation to varying levels of species richness. In nearly all cases, responses were significantly negatively correlated with control plot species richness, and relative responses indicated that species‐rich plots were less resistant to scouring and cutting. 4. Our results suggest that although all disturbance treatments had an effect on species richness, variation in sensitivity to disturbance is not the most important factor shaping landscape‐scale patterns of riparian plant species richness along rivers. 相似文献
7.
《Ecohydrology》2017,10(1)
Herbivory by ungulates can shape the structure and function of riparian forests. However, our understanding of the interactions between herbivores and cottonwoods (Populus spp.) is largely derived from studies of domestic livestock grazing and may not reflect free ranging herds of wild ungulates. In this study, we quantified the influence of stream hydrologic regime and herbivory by wild ungulates on cottonwood establishment and growth along three rivers in Yellowstone National Park's northern range. Approximately 1.36 of the existing 1.37 million cottonwoods representing approximately 66% of the cottonwood stand area in Yellowstone's northern range was established between 1995 and 2008 by the largest flood sequence in recorded history. Coincidentally, the flood sequence began in the years immediately following wolf (Canis lupus ) reintroduction to Yellowstone National Park. The flows caused large‐scale channel changes and provided suitable habitat for cottonwood seedling establishment and survival. Over 92% of the cottonwoods occurred along the Lamar River, and recruitment along this river appears to follow infrequent large peak flows. Soda Butte Creek and the Gardner River cottonwoods exhibited nearly annual recruitment. The resulting cottonwood biomass from the flooding events has exceeded herbivore demand. Even at relatively low consumption rates, bison are able to remove a significant proportion of total cottonwood production in the study areas limiting plant height and forage available to wintering elk. We conclude that the large cottonwood recruitment event that began in the late 1990s was due to a rare series of large snowmelt‐driven floods. 相似文献
8.
Judith M. Sarneel Mariet M. Hefting George A. Kowalchuk Christer Nilsson Merit Van der Velden Eric J. W. Visser Laurentius A. C. J. Voesenek Roland Jansson 《Global Change Biology》2019,25(4):1358-1367
Climate change will have large consequences for flooding frequencies in freshwater systems. In interaction with anthropogenic activities (flow regulation, channel restoration and catchment land‐use) this will both increase flooding and drought across the world. Like in many other ecosystems facing changed environmental conditions, it remains difficult to predict the rate and trajectory of vegetation responses to changed conditions. Given that critical ecosystem services (e.g. bank stabilization, carbon subsidies to aquatic communities or water purification) depend on riparian vegetation composition, it is important to understand how and how fast riparian vegetation responds to changing flooding regimes. We studied vegetation changes over 19 growing seasons in turfs that were transplanted in a full‐factorial design between three riparian elevations with different flooding frequencies. We found that (a) some transplanted communities may have developed into an alternative stable state and were still different from the target community, and (b) pathways of vegetation change were highly directional but alternative trajectories did occur, (c) changes were rather linear but faster when flooding frequencies increased than when they decreased, and (d) we observed fastest changes in turfs when proxies for mortality and colonization were highest. These results provide rare examples of alternative transient trajectories and stable states under field conditions, which is an important step towards understanding their drivers and their frequency in a changing world. 相似文献
9.
热带森林是地球上生物多样性最高和生态功能最为强大的植被类型之一,在维护全球生态平衡中起着至关重要的作用,同时也为人类社会提供着多种多样的物质资源和生态系统服务。然而热带森林是目前生物多样性消失最快和生态功能退化最为严重的生态系统之一,如何有效地保护现存的热带森林不再进一步退化,以及如何使已经退化的生态系统尽快得到恢复是生态学工作者面临的重要议题。不同方式、规模和强度的干扰对热带林的破坏程度及其以后的恢复过程产生的影响不同。除少数大型自然干扰事件外,采伐、刀耕火种、农业开发用地等人为干扰是造成当前热带森林植被大面积退化的主要原因。多种干扰交互作用、杂草与外来物种入侵、退化植被和土壤状况、残存植被组分及土壤种子库、退化植被周围的景观格局以及全球气候变化等因素都能够影响热带森林植被恢复的速度和方向。基于功能群的研究思想将可能为物种丰富的热带森林植被恢复的研究提供一个全新途径。 相似文献
10.
Invasion by the non‐native tree Tamarix has led to implementation of restoration projects aimed at maintaining the ecological integrity of many riparian communities in the southwestern United States. These restoration efforts may include Tamarix removal, manipulation of hydrologic regimes, and active revegetation of native species. The goal of this study was to determine which site characteristics are correlated with restoration success, defined in terms of reductions of undesirable species such as Tamarix and establishment of desirable, native species. To accomplish this, vegetative and environmental data were collected at 28 sites in the southwestern United States where active revegetation was completed after Tamarix removal. These data were incorporated into regression tree models with predictor variables that included number of years since removal (1–18 years) and multiple management, climate, soils, and hydrological variables to determine success of Tamarix control, revegetation success, and general plant community responses. Our results suggest that there are easily measurable site characteristics that are associated with greater native cover and richness, planting success, and Tamarix control. Close proximity to perennial water, sufficient precipitation, recent flooding, and good drainage as well as coarser soil texture, and lower soil pH all favored native species. Overall, those site characteristics associated with native species success were the same as those related to lower Tamarix cover. These quantitative models are intended to assist researchers and land managers to design more effective riparian restoration efforts in this critical arid lands ecosystem. 相似文献