首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

2.
1. Willows, Salix spp., have been widely introduced as a riparian species in temperate Australia and New Zealand. The present study was a broad-scale observational survey to document the differences between reaches of river lined with willows and native vegetation in the community structure of benthic invertebrates and the resources which these plants use.
2. Nine rivers in south-eastern Tasmania were examined on three occasions in autumn, spring and summer. Taxa were identified to family level, with the exception of Oligochaeta and Acarina, and benthic organic matter (CPOM and FPOM) and epilithic biomass were measured for each reach.
3. Taxon diversity and evenness were lower in willowed reaches in autumn, and total macroinvertebrate density and number of taxa were lowest in willowed reaches in summer. No differences in the fauna between willowed and native reaches were observed in spring. Measures of community similarity of the fauna in willowed and native reaches were significantly different in autumn and summer, but not in spring.
4. The taxa responsible for the significant differences seemed to be responding to differences in food availability and habitat quality in reaches of each vegetation type. Organic matter standing stock was higher in willowed reaches in autumn although the influence of these litter inputs on the fauna were not marked. Epilithon biomass was highest in autumn and spring in willowed reaches when shading in these reaches was least.
5.  The most marked differences between willowed and native reaches were during summer low flows, when the instream fauna appeared to be responding to changes to shading, water quality and the quality of the habitat.  相似文献   

3.
1. Large-scale invasions of riparian trees can alter the quantity and quality of allochthonous inputs of leaf litter to streams and thus have the potential to alter stream organic matter dynamics. Non-native saltcedar ( Tamarix sp.) and Russian olive ( Elaeagnus angustifolia ) are now among the most common trees in riparian zones in western North America, yet their impacts on energy flow in streams are virtually unknown.
2. We conducted a laboratory feeding experiment to compare the growth of the aquatic crane fly Tipula (Diptera: Tipulidae) on leaf litter from native cottonwood ( Populus ) and non-native Tamarix and Elaeagnus . Tipula showed positive growth on leaf litter of all three species; however, after 7 weeks, larvae fed Tamarix leaves averaged 1.7 and 2.5 times the mass of those fed Elaeagnus and Populus , respectively. Tipula survival was highest on Populus , intermediate on Tamarix and lowest on Elaeagnus .
3. High Tipula growth on Tamarix probably reflects a combination of leaf chemistry and morphology. Conditioned Tamarix leaf litter had intermediate carbon : nitrogen values (33 : 1) compared to Populus (40 : 1) and Elaeagnus (26 : 1), and it had intermediate proportions of structural carbon (42%) compared to Elaeagnus (57%) and Populus (35%). Tamarix leaves are also relatively small and possibly more easily ingested by Tipula than either Elaeagnus or Populus .
4. Field surveys of streams in the western U.S.A. revealed that Tamarix and Elaeagnus leaf packs were rare compared to native Populus , probably due to the elongate shape and small size of the non-native leaves. Thus we conclude that, in general, the impact of non-native riparian invasion on aquatic shredders will depend not only on leaf decomposition rate and palatability but also on rates of leaf litter input to the stream coupled with streambed retention and subsequent availability to consumers.  相似文献   

4.
Ephemeral reaches are common along desert rivers but are less well studied than those with perennial stream flow. This study contrasted riparian plant species richness and composition (extant vegetation and soil seed bank) between stream reaches with different low-flow conditions (perennial vs. ephemeral flow) but similar flood patterns and similar watershed-derived species pools. Data were collected at Cienega Creek (Arizona, USA) over a 2 year period spanning drought conditions and wetter conditions. Consistent with expectations relating to water limitation effects on diversity, species richness in the riparian zone was lower at ephemeral-flow sites during a season with minimal precipitation and no overbank flooding; under these conditions, the more permanent water sources of the perennial-flow sites sustain the larger number of species. During seasons with greater precipitation and elevated stream flows, in contrast, species richness at ephemeral-flow sites increased to levels at or slightly above those of perennial-flow sites. For values pooled across two wet seasons of a calendar year, year-round richness was greater at the two ephemeral-flow sites (total of 92 vascular plant species) than at the two perennial-flow sites (68 species). This greater year-round richness was a combination of multiple factors: greater light, space, and bare ground, a diverse soil seed bank (with the seed banks equally species-rich among hydrologic types), and moderately abundant precipitation and flooding sufficient to stimulate establishment of opportunistic species (mainly annuals) during the bimodal wet seasons. These results indicate that long-term patterns of site water availability, by influencing woody plant cover, mediate the diversity response to episodic water pulses in dryland rivers. The results also have implications for riparian conservation efforts, which to date have focused primarily on perennial stream reaches: ephemeral reaches of spatially intermittent rivers harbor many riparian plant species, and warrant conservation efforts, as well.  相似文献   

5.
Most major rivers in the southwestern United States have been hydrologically altered to meet human needs. Altered hydrological regimes have been associated with declines in native riparian forests. Today, many riparian areas have little or no regeneration of native riparian species and are now dominated by exotic Saltcedar (Tamarix chinensis Lour.). Success of riparian restoration efforts at least partially depends on the number of seedlings surviving the first growing season. Seedling survival is influenced by many abiotic and biotic factors including competition from other plants and available soil moisture, which is partially dependent on soil texture. In this study, we evaluated the relative importance of four soil categories (sandy loam, loam, silt, and clay), rate of soil moisture decline, salinity, beginning‐ and end‐season Saltcedar density, initial Cottonwood (Populus deltoides Marshall subsp. wislizenii (Wats.) Eckenw.) seedling density, percent vegetation cover by potential dominant competitors Pigweed (Amaranthus L.) and Barnyard grass (Echinochloa crusgalli L., Beauv.), and average total vegetation height to Cottonwood seedling survival. Factors influencing seedling survival differed among the four soil types. Rate of moisture decline was important in sandy soils, whereas vegetation height influenced seedling survival in loamy soils. Overall, models of seedling survival in all the four soil types indicated rate of moisture decline as the single most important variable influencing Cottonwood survival. High initial densities of Saltcedar were correlated to higher survival in Cottonwood seedlings. Therefore, it is important to identify soil texture and understand soil moisture decline rates when proposing riparian Cottonwood restoration.  相似文献   

6.
Invasion by the non‐native tree Tamarix has led to implementation of restoration projects aimed at maintaining the ecological integrity of many riparian communities in the southwestern United States. These restoration efforts may include Tamarix removal, manipulation of hydrologic regimes, and active revegetation of native species. The goal of this study was to determine which site characteristics are correlated with restoration success, defined in terms of reductions of undesirable species such as Tamarix and establishment of desirable, native species. To accomplish this, vegetative and environmental data were collected at 28 sites in the southwestern United States where active revegetation was completed after Tamarix removal. These data were incorporated into regression tree models with predictor variables that included number of years since removal (1–18 years) and multiple management, climate, soils, and hydrological variables to determine success of Tamarix control, revegetation success, and general plant community responses. Our results suggest that there are easily measurable site characteristics that are associated with greater native cover and richness, planting success, and Tamarix control. Close proximity to perennial water, sufficient precipitation, recent flooding, and good drainage as well as coarser soil texture, and lower soil pH all favored native species. Overall, those site characteristics associated with native species success were the same as those related to lower Tamarix cover. These quantitative models are intended to assist researchers and land managers to design more effective riparian restoration efforts in this critical arid lands ecosystem.  相似文献   

7.
8.
1. The growth of riparian trees in semi‐arid regions is influenced by stream flow regime, but the relative importance of base flow and seasonal floods on growth has not been explored. I examined abiotic influences on the growth of Platanus wrightii in four stream reaches in Arizona. All reaches had a bimodal pattern of discharge, but only two had continuous flow throughout the growing season.
2. In two reaches of Sycamore Creek without perennial flow, a large percentage of the annual variation in radial growth rate of P. wrightii was explained by annual and growing season flow rate. Growth was related to these same variables in a perennial reach of Sycamore Creek, but trees maintained higher growth during drought years than they did in the temporary reaches. At Oak Creek, a larger perennial stream, P. wrightii growth showed a bell‐shaped relationship with flow. These data suggest that growth rate is frequently limited by water availability at Sycamore Creek, but not at Oak Creek.
3. At both rivers, much of the annual surface flow occurs as winter floods. Oak Creek, however, maintains a high summer base flow even during years with no floods. Platanus wrightii growth was significantly related to winter flood frequency only at Sycamore Creek. The positive relationship of growth with stream flow and winter flood frequency at Sycamore Creek presumably occurs because the P. wrightii trees are dependent on the winter flows to recharge the shallow alluvial aquifer and to raise the level of ground water within the root zone.
4. Frequent summer floods increased the growth of trees in perennial and non‐perennial reaches alike. At perennial Oak Creek, summer flood frequency was the only variable linearly related to growth of P. wrightii. Summer flood frequency was a significant, but secondary, component of multiple‐regression growth models for trees in the perennial and non‐perennial reaches of Sycamore Creek. Summer floods may stimulate growth, in part, by replenishing limiting nutrients.
5. High temperature was negatively associated with the growth of P. wrightii at Sycamore Creek. The combination of drought and high temperature resulted in very low growth rate.
6. These results have implications for the management of flood and base flow regimes on regulated, diverted and pumped rivers.  相似文献   

9.
River impoundments can fundamentally restructure downstream fish assemblages by altering flow regimes. However, the degree of alteration and associated ecological change may depend on pre-existing hydrologic regimes. We used long-term datasets to compare downstream hydrological and fish assemblage responses to impoundment in two catchments classified as having intermittent and perennial-flashy natural hydrologic regimes. We observed significant shifts in fish assemblage structure at both sites after stream impoundment. The historically intermittent stream shifted to a stable perennial flow regime. Changes in fish assemblage structure covaried with changes in five different components of the flow regime; most species that increased in abundance require fluvial habitats and likely benefited from increased flows during historically low flow seasons. Shifts in fish assemblage structure were also observed in the perennial stream, despite minimal flow alteration after impoundment; however, most species shifts were associated with lentic environments, and were more likely related to proximity of reservoirs in the drainage system rather than changes in stream flow. Findings from this study confirm that downstream fish assemblage response to river impoundment can be associated with high levels of hydrologic alteration, but other factors including expansion of lentic species into lotic environments also influence shifts in assemblage structure.  相似文献   

10.
River management practices have altered the hydrological regimes of many rivers and also altered the availability of regeneration niches for riparian species. We investigated the impact of changed hydrological regimes on the sex ratios and the Spatial Segregation of the Sexes (SSS) in the dioecious species Salix myrsinifolia Salisb.–phylicifolia L. and S. lapponum L. by studying the free-flowing Vindel River and the regulated Ume River in northern Sweden. We surveyed sex ratios of these species in 12 river reaches on the Vindel River and in 17 reaches on the Ume River. In addition, we surveyed the sex and location above mean river stage of 1,002 individuals across both river systems to investigate the SSS of both species. Cuttings were collected from male and female individuals of S. myrsinifolia–phylicifolia from both rivers and subjected to four different water table regimes in a greenhouse experiment to investigate growth response between the sexes. We found an M/F sex ratio in both river systems similar to the regional norm of 0.62 for S. myrsinifolia–phylicifolia and of 0.42 for S. lapponum. We found no evidence of SSS in either the free-flowing Vindel River or the regulated Ume River. In the greenhouse experiment, hydrological regime had a significant effect on shoot and root dry weight and on root length. Significantly higher shoot dry weights were found in females than in males and significantly different shoot and root dry weights were found between cuttings taken from the two rivers. We concluded that changed hydrological regimes are likely to alter dimensions of the regeneration niche and therefore to influence sex ratios and SSS at an early successional stage, making it difficult to find clear spatial patterns once these species reach maturity and can be sexed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号