首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 772 毫秒
1.
Adult mesenchymal stem cells (MSCs) have the capacity for self-renewal and for differentiating into a variety of cells and tissues. They may leave their niche to migrate to remote tissues and play a critical role in wound repair and tissue regeneration. Because of their multipotency, easy isolation and culture, highly expansive potential, and immunosuppression properties, these cells may be an attractive therapeutic tool for regenerative medicine and tissue engineering. Several studies have indicated a contribution of MSCs to reconstituting skin in cutaneous wounds, but problems still need resolution before MSCs can be widely used clinically. This review focuses mainly on the benefits of MSCs in skin wound healing and tissue regeneration and on the questions that remain to be answered before MSCs can be used in clinical practice. This study was supported in part by the National Natural Science Foundation of China (30730090, 30672176, 30500194) and by State Key Development Program of Basic Research of China (973 Program, 2005CB522603).  相似文献   

2.
Poor healing of cutaneous wounds is a common medical problem in the field of traumatology. Due to the intricate pathophysiological processes of wound healing, the use of conventional treatment methods, such as chemical molecule drugs and traditional dressings, have been unable to achieve satisfactory outcomes. Within recent years, explicit evidence suggests that mesenchymal stem cells (MSCs) have great therapeutic potentials on skin wound healing and regeneration. However, the direct application of MSCs still faces many challenges and difficulties. Intriguingly, exosomes as cell-secreted granular vesicles with a lipid bilayer membrane structure and containing specific components from the source cells may emerge to be excellent substitutes for MSCs. Exosomes derived from MSCs (MSC-exosomes) have been demonstrated to be beneficial for cutaneous wound healing and accelerate the process through a variety of mechanisms. These mechanisms include alleviating inflammation, promoting vascularization, and promoting proliferation and migration of epithelial cells and fibroblasts. Therefore, the application of MSC-exosomes may be a promising alternative to cell therapy in the treatment of cutaneous wounds and could promote wound healing through multiple mechanisms simultaneously. This review will provide an overview of the role and the mechanisms of MSC-derived exosomes in cutaneous wound healing, and elaborate the potentials and future perspectives of MSC-exosomes application in clinical practice.  相似文献   

3.
糖尿病患者的皮肤组织易受内源性及外源性的各种损伤,且创面具有愈合慢、易感染等特点,这种特点在下肢皮肤创伤中表现尤为突出,常伴有高截肢风险,故糖尿病皮肤损伤可严重影响患者的生活质量。间充质干细胞(MSCs)是一类多能干细胞,其具有易分离、易培养、多向分化和免疫源性低等特征,目前已被广泛应用于创伤修复、组织再生等研究。对于糖尿病皮肤损伤,MSCs的临床移植治疗已成为继药物、手术之后的又一种治疗新技术。本文结合MSCs的生物学特性,对其应用在糖尿病皮肤损伤方面的研究进展做一综述。  相似文献   

4.
Chronic or non-healing skin wounds present an ongoing challenge in advanced wound care, particularly as the number of patients increases while technology aimed at stimulating wound healing in these cases remains inefficient. Mesenchymal stem cells (MSCs) have proved to be an attractive cell type for various cell therapies due to their ability to differentiate into various cell lineages, multiple donor tissue types, and relative resilience in ex-vivo expansion, as well as immunomodulatory effects during transplants. More recently, these cells have been targeted for use in strategies to improve chronic wound healing in patients with diabetic ulcers or other stasis wounds. Here, we outline several mechanisms by which MSCs can improve healing outcomes in these cases, including reducing tissue inflammation, inducing angiogenesis in the wound bed, and reducing scarring following the repair process. Approaches to extend MSC life span in implant sites are also examined.  相似文献   

5.
Cutaneous regeneration is a dynamic and complex process that requires a series of coordinated interactions involving epidermal cells, dermal cells, growth factors, the extracellular matrix (ECM), nerves and blood vessels at a damaged site. Mesenchymal stromal cells (MSCs) have been reported to participate in all afore-mentioned stages. Exosomes are one of the key secretory products of MSCs, resembling the effect of parental MSCs. They can shuttle various proteins, messenger RNA (mRNA) and microRNAs (miRNAs) to modulate the activity of recipient cells, and play important roles in cutaneous wound healing. Compared with MSCs, exosomes are more convenient to store and transport. Moreover, they avoid many risks associated with cell transplantation. Therefore, MSC-exosome–mediated therapy may be more safe and efficient. In this review, we summarize the latest studies and observations on the role of MSC-exosome in the acute and chronic wound model and provide a comprehensive understanding of the role of exosomes in wound healing. This review can assist investigators in exploring new therapeutic strategies for enhancing the efficacy of MSC-exosome for cutaneous repair and regeneration.  相似文献   

6.
《Cytotherapy》2021,23(11):961-973
Mesenchymal stromal cells (MSCs) are multi-potent stromal-derived cells capable of self-renewal that possess several advantageous properties for wound healing, making them of interest to the field of dermatology. Research has focused on characterizing the unique properties of MSCs, which broadly revolve around their regenerative and more recently discovered immunomodulatory capacities. Because of ease of harvesting and expansion, differentiation potential and low immunogenicity, MSCs have been leading candidates for tissue engineering and regenerative medicine applications for wound healing, yet results from clinical studies have been variable, and promising pre-clinical work has been difficult to reproduce. Therefore, the specific mechanisms of how MSCs influence the local microenvironment in distinct wound etiologies warrant further research. Of specific interest in MSC-mediated healing is harnessing the secretome, which is composed of components known to positively influence wound healing. Molecules released by the MSC secretome can promote re-epithelialization and angiogenesis while inhibiting fibrosis and microbial invasion. This review focuses on the therapeutic interest in MSCs with regard to wound healing applications, including burns and diabetic ulcers, with specific attention to the genetic skin disease recessive dystrophic epidermolysis bullosa. This review also compares various delivery methods to support skin regeneration in the hopes of combating the poor engraftment of MSCs after delivery, which is one of the major pitfalls in clinical studies utilizing MSCs.  相似文献   

7.
《Cytotherapy》2020,22(5):247-260
The process of wound healing restores skin homeostasis but not full functionality; thus, novel therapeutic strategies are needed to accelerate wound closure and improve the quality of healing. In this context, tissue engineering and cellular therapies are promising approaches. Although sharing essential characteristics, mesenchymal stromal cells (MSCs) isolated from different tissues might have distinct properties. Therefore, the aim of this study was to comparatively investigate, by a mouse model in vivo assay, the potential use of dermal-derived MSCs (DSCs) and adipose tissue–derived MSCs (ASCs) in improving skin wound healing. Human DSCs and ASCs were delivered to full-thickness mouse wounds by a collagen-based scaffold (Integra Matrix). We found that the association of both DSCs and ASCs with the Integra accelerated wound closure in mice compared with the biomaterial only (control). Both types of MSCs stimulated angiogenesis and extracellular matrix remodeling, leading to better quality scars. However, the DSCs showed smaller scar size,superior extracellular matrix deposition, and greater number of cutaneous appendages. Besides, DSCs and ASCs reduced inflammation by induction of macrophage polarization from a pro-inflammatory (M1) to a pro-repair (M2) phenotype. In conclusion, both DSCs and ASCs were able to accelerate the healing of mice skin wounds and promote repair with scars of better quality and more similar to healthy skin than the empty scaffold. DSCs associated with Integra induced superior overall results than the Integra alone, whereas scaffolds with ASCs showed an intermediate effect, often not significantly better than the empty biomaterial.  相似文献   

8.
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.  相似文献   

9.
Significantly effective therapies need to be developed for chronic nonhealing diabetic wounds. In this work, the topical transplantation of mesenchymal stem cell (MSC) seeded on an acellular dermal matrix (ADM) scaffold is proposed as a novel therapeutic strategy for diabetic cutaneous wound healing. GFP‐labeled MSCs were cocultured with an ADM scaffold that was decellularized from normal mouse skin. These cultures were subsequently transplanted as a whole into the full‐thickness cutaneous wound site in streptozotocin‐induced diabetic mice. Wounds treated with MSC‐ADM demonstrated an increased percentage of wound closure. The treatment of MSC‐ADM also greatly increased angiogenesis and rapidly completed the reepithelialization of newly formed skin on diabetic mice. More importantly, multiphoton microscopy was used for the intravital and dynamic monitoring of collagen type I (Col‐I) fibers synthesis via second harmonic generation imaging. The synthesis of Col‐I fibers during diabetic wound healing is of great significance for revealing wound repair mechanisms. In addition, the activity of GFP‐labeled MSCs during wound healing was simultaneously traced via two‐photon excitation fluorescence imaging. Our research offers a novel advanced nonlinear optical imaging method for monitoring the diabetic wound healing process while the ADM and MSCs interact in situ. Schematic of dynamic imaging of ADM scaffolds seeded with mesenchymal stem cells in diabetic wound healing using multiphoton microscopy. PMT, photo‐multiplier tube.   相似文献   

10.
BACKGROUND: Recently, we have reported a rapid and strong induction of interleukin-18 (IL-18) upon cutaneous injury in mice. In this paper, we investigated a possible role of IL-18 in triggering interferon-gamma (IFN-gamma) production at the wound site. MATERIALS AND METHODS: Expression of IFN-gamma during cutaneous wound healing was analyzed by RNase protection assay, Western blot, ELISA, and immunohistochemical techniques in a murine model of excisional skin repair. RESULTS: We could not detect any IFN-gamma mRNA and protein expression during normal skin repair. Additionally, impaired healing in the genetically diabetic db/db mouse, which was used as a model for a prolonged inflammatory phase of repair, was characterized by largely elevated levels of IL-18 during the late phase of repair and an absence of IFN-gamma. Western blot analysis for T-cell- and monocyte/macrophage-specific marker proteins (CD4, F4/80) clearly revealed the presence of these subsets of leukocytic cells at the wound site, that are known to produce IFN-gamma in response to IL-18. Furthermore, we provide evidence that the presence of transforming growth factor-beta1 (TGF-beta1) at the wound site might reflect a counterregulatory mechanism in IL-18-induced IFN-gamma production, as TGF-beta1 strongly suppressed IL-18/phytohaemagglutinin (PHA)-induced IFN-gamma production by peripheral blood mononuclear cells (PBMC) in vitro. CONCLUSIONS: Normal tissue regeneration processes after cutaneous injury were not dependent on the presence of IFN-gamma in vivo, and IL-18 must serve additional roles rather than inducing IFN-gamma during the healing process.  相似文献   

11.
The cutaneous wound repair process involves balancing a dynamic series of events ranging from inflammation, oxidative stress, cell migration, proliferation, survival and differentiation. A complex series of secreted trophic factors, cytokines, surface and intracellular proteins are expressed in a temporospatial manner to restore skin integrity after wounding. Impaired initiation, maintenance or termination of the tissue repair processes can lead to perturbed healing, necrosis, fibrosis or even cancer. Nuclear hormone receptors (NHRs) in the cutaneous environment regulate tissue repair processes such as fibroplasia and angiogenesis. Defects in functional NHRs and their ligands are associated with the clinical phenotypes of chronic non‐healing wounds and skin endocrine disorders. The functional relationship between NHRs and skin niche cells such as epidermal keratinocytes and dermal fibroblasts is pivotal for successful wound closure and permanent repair. The aim of this review is to delineate the cutaneous effects and cross‐talk of various nuclear receptors upon injury towards functional tissue restoration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Over 50% of all cancer patients presently receive radiotherapy at one stage in their treatment course. Inevitably skin is one of the most frequently damaged tissue due to its localization and constant turn-over. Our present goal is to reduce radiation-induced complications in human skin through stem cell therapy, particulary in human epidermis. Mesenchymal Stem Cells (MSCs) have been shown to be multipotent cells able to engraft in many tissues after injury. Herein, we isolated human MSCs and tested their capability to improve skin wound healing after irradiation. This potential was assessed in NOD/SCID mice which received 30 Gy locally on the thigh. This dose caused within 3 weeks local epidermis necrosis which was repaired within 13 weeks. MSCs were intravenously injected in irradiated mice 24 hours after exposure. Clinical scoring throughout 6 weeks gave indications that human MSCs reduced the extent of damage and accelerated the wound healing process. We show by quantitative qPCR and histological studies the presence of human MSCs derived cells into the scar. Human MSCs homed to the damaged skin and participated to the wound healing process. These results open prospects for cellular therapy by MSCs in irradiated epithelial tissues and could be extended to the whole general field of cutaneous cicatrization, particularly after burns.  相似文献   

13.
Cutaneous wounds persist as a health care crisis in spite of increased understanding of the cellular and molecular responses to injury. Contributing significantly to this crisis is the lack of reliable therapies for treatment of wounds that are slow to heal including chronic wounds and deep dermal wounds that develop hypertrophic scars. This article will review the growing evidence demonstrating the promise of multipotent mesenchymal stem/stromal (MSCs) for the treatment of impaired wound healing. MSCs are often referred to as mesenchymal stem cells despite concerns that these cells are not truly stem cells given the lack of evidence demonstrating self-renewal in vivo. Regardless, abundant evidence demonstrates the therapeutic potential of MSCs for repair and regeneration of damaged tissue due to injury or disease. To date, MSC treatment of acute and chronic wounds results in accelerated wound closure with increased epithelialization, granulation tissue formation and angiogenesis. Although there is evidence for MSC differentiation in the wound, most of the therapeutic effects are likely due to MSCs releasing soluble factors that regulate local cellular responses to cutaneous injury. Important challenges need to be overcome before MSCs can be used effectively to treat wounds that are slow to heal.  相似文献   

14.
Corneal diseases are a major cause of blindness in the world. Although great progress has been achieved in the treatment of corneal diseases, wound healing after severe corneal damage and immunosuppressive therapy after corneal transplantation remain prob-lematic. Mesenchymal stem cells(MSCs) derived from bone marrow or other adult tissues can differentiate into various types of mesenchymal lineages, such as osteocytes, adipocytes, and chondrocytes, both in vivo and in vitro. These cells can further differentiate into specific cell types under specific conditions. MSCs migrate to injury sites and promote wound healing by secreting anti-inflammatory and growth factors. In ad-dition, MSCs interact with innate and acquired immune cells and modulate the immune response through their powerful paracrine function. Over the last decade, MSCs have drawn considerable attention because of their beneficial properties and promising therapeutic prospective. Furthermore, MSCs have been applied to various studies related to wound healing, autoim-mune diseases, and organ transplantation. This review discusses the potential functions of MSCs in protecting corneal tissue and their possible mechanisms in corneal wound healing and corneal transplantation.  相似文献   

15.
The function of the endogenous angiogenesis inhibitor thrombospondin-1 (TSP-1) in tissue repair has remained controversial. We established transgenic mice with targeted overexpression of TSP-1 in the skin, using a keratin 14 expression cassette. TSP-1 transgenic mice were healthy and fertile, and did not show any major abnormalities of normal skin vascularity, cutaneous vascular architecture, or microvascular permeability. However, healing of full-thickness skin wounds was greatly delayed in TSP-1 transgenic mice and was associated with reduced granulation tissue formation and highly diminished wound angiogenesis. Moreover, TSP-1 potently inhibited fibroblast migration in vivo and in vitro. These findings demonstrate that TSP-1 preferentially interfered with wound healing-associated angiogenesis, rather than with the angiogenesis associated with normal development and skin homeostasis, and suggest that therapeutic application of angiogenesis inhibitors might potentially be associated with impaired wound vascularization and tissue repair.  相似文献   

16.
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.  相似文献   

17.
Epidermal stem cells (SCs) residing in the skin play an essential role for epidermal regeneration during cutaneous wound healing. Upon injury, distinct epidermal SCs residing in the interfollicular epidermis and/or hair follicles are activated to proliferate. Subsequently, SCs and progeny migrate, differentiate and restore the epidermis. We review a role of the vitamin D signaling through its receptor of vitamin D receptor (Vdr) in these processes. Vdr conditional knockout (cKO) mouse skin experiences a delay in wound re-epithelialization under low dietary calcium conditions, stimulating our efforts to examine a cooperative role of Vdr with calcium signaling through the calcium sensing receptor in the epidermis. We review the role of vitamin D and calcium signaling in different processes essential for injury induced epidermal regeneration during cutaneous wound repair. First, we discuss their roles in self-renewal of epidermal SCs through β-catenin signaling. Then, we describe epidermal remodeling, in which SCs and progeny migrate and differentiate to restore the epidermis, events controlled by the E-cadherin mediated adherens junction signaling. Finally, we discuss the potential mechanisms for vitamin D and calcium signaling to regulate injury induced epidermal regeneration mutually and interdependently.  相似文献   

18.
In order to achieve successful wound repair by regenerative tissue engineering using mesenchymal stem cells (MSCs), it is important to understand the response of stem cells in the scaffold matrix to mechanical stress.
To investigate the clinical effects of mechanical stress on the behavior of cells in scaffolds, bone marrow-derived mesenchymal stem cells (MSCs) were grown on a type-I collagen-glycosaminoglycan (GAG) scaffold matrix for one week under cyclic stretching loading conditions.
The porous collagen-GAG scaffold matrix for skin wound repair was prepared, the harvested canine MSCs were seeded on the scaffold, and cultured under three kinds of cyclic stretching loading conditions ( 0%: control, 5% strain, 15% strain ). After 7 days incubation, MSCs were evaluated histologically and immunohistochemically regarding the proliferation and differentiation.
Cultured MSCs in the high strain (15% strain) group showed activea-smooth muscle actin (α-SMA) expression and poor differentiation into type-I collagen-positive cells, whereas enhanced differentiation into type-I collagen positive cells and a lack ofa-SMA expression where shown in the lower stress (5% strain) group. These results suggest that mechanical stress may affect the proliferation and differentiation of stem cells, and subsequently the wound healing process, through attachment interactions between the stem cells and scaffold matrix. Our findings provide an additional consideration for clinical treatment of wound repair using regenerative tissue engineering.  相似文献   

19.
Elucidating the roles and composition of the human skin microbiome has revealed a delicate interplay between resident microbes and wound healing. Evolutionarily speaking, normal cutaneous flora likely has been selected for because it potentiates or, at minimum, does not impede wound healing. While pigs are the gold standard model for wound healing studies, the porcine skin microbiome has not been studied in detail. Herein, we performed 16S rDNA sequencing to characterize the pig skin bacteriome at several anatomical locations. Additionally, we used bacterial conditioned-media with in vitro techniques to examine the paracrine effects of bacterial-derived proteins on human keratinocytes (NHEK) and fibroblasts (NHDF). We found that at the phyla level, the pig skin bacteriome is similar to that of humans and largely consists of Firmicutes (55.6%), Bacteroidetes (20.8%), Actinobacteria (13.3%), and Proteobacteria (5.1%) however species-level differences between anatomical locations exist. Studies of bacterial supernatant revealed location-dependent effects on NHDF migration and NHEK apoptosis and growth factor release. These results expand the limited knowledge of the cutaneous bacteriome of healthy swine, and suggest that naturally occurring bacterial flora affects wound healing differentially depending on anatomical location. Ultimately, the pig might be considered the best surrogate for not only wound healing studies but also the cutaneous microbiome. This would not only facilitate investigations into the microbiome’s role in recovery from injury, but also provide microbial targets for enhancing or accelerating wound healing.  相似文献   

20.
Compared to other vertebrates, the regenerative capacity of appendages in mammals is very limited. Deer antlers are an exception and can fully regenerate annually in postnatal mammals. This process is initiated by the antler stem cells (AnSCs). AnSCs can be divided into three types: (1) Antlerogenic periosteum cells (for initial pedicle and first antler formation); (2) Pedicle periosteum cells (for annual antler regeneration); and (3) Reserve mesenchyme cells (RMCs) (for rapid antler growth). Previous studies have demonstrated that AnSCs express both classic mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs), and are able to differentiate into multiple cell types in vitro. Thus, AnSCs were defined as MSCs, but with partial ESC attributes. Near-perfect generative wound healing can naturally occur in deer, and wound healing can be achieved by the direct injection of AnSCs or topical application of conditioned medium of AnSCs in rats. In addition, in rabbits, the use of both implants with AnSCs and cell-free preparations derived from AnSCs can stimulate osteogenesis and repair defects of bone. A more comprehensive understanding of AnSCs will lay the foundation for developing an effective clinical therapy for wound healing and bone repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号