首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to describe kinematic and kinetic differences between a group of ACL deficient subjects who were grouped according to functional ability. Sixteen patients with complete ACL rupture were studied; eight subjects had instability with activities of daily living (non-copers) and eight subjects had returned to all pre-injury activity without limitation (copers). Three-dimensional joint kinematics and kinetics were collected from the knee and ankle during walking, jogging and going up and over a step. Results showed that both groups mitigated the force with which they contacted the floor but non-copers consistently demonstrated less knee flexion in the involved limb. The copers used joint kinematics similar to those of their uninvolved knees and similar to knee motions reported in uninjured subjects. The reduced knee motion in the involved knee of the non-copers did not correlate directly with quadriceps femoris muscle weakness.

The data suggest that the non-copers utilize a stabilization strategy which stiffens the knee joint which not only is unsuccessful but may lead to excessive joint contact forces which have the potential to damage articular structures. The copers use a strategy which permits normal knee kinematics and bodes well for joint integrity.  相似文献   


2.
Stair ascent and descent requires large knee motions and muscle forces that can be challenging for people with anterior cruciate ligament (ACL) deficiency. Movement and muscle activity patterns were compared in two groups of ACL deficient subjects and a group of uninjured subjects. The ACL deficient subjects were prospectively classified according to functional ability. "Copers" were defined as individuals with complete ACL rupture and no symptoms of knee instability and participated in high-level sports without difficulty. "Non-copers" were defined as ACL deficient individuals who had instability with low-level daily activities and were not able to participate in sports. Sagittal plane kinematic and kinetic data from the hip, knee and ankle and electromyographic data from the vastus lateralis, lateral hamstring, medial gastrocnemius, and soleus were collected as subjects stepped up and over a 26 cm high step. Both coper and non-coper subjects had altered movement patterns as they controlled the rapid movement from step ascent to descent with their involved limbs. Only non-copers used significantly different movement patterns on their involved limb compared to controls after they had descended from the step and their involved side accepted the weight of the body. Classifying subjects by functional ability resulted in more pronounced differences in movement patterns between non-copers and copers. Copers moved more like uninjured subjects.  相似文献   

3.
The morphology (volume and peak cross-sectional area) and voluntary muscle control of 27 athletic people were evaluated with magnetic resonance imaging (MRI) and an established method of testing neuromuscular control in order to explain why some people are able to cope with anterior cruciate ligament (ACL) injury (copers), whereas most cannot (non-copers). Axial spin-echo T1 weighted MRI images were acquired from the level of the ankle mortise to the iliac crest. The subjects' quadriceps, hamstrings, and gastrocnemius muscles were digitally reconstructed from the MRI images. The volume and peak cross-sectional area (CSA) of each muscle were then calculated. Voluntary muscle control was evaluated using an established target-matching protocol that requires subjects to produce and modulate force with control over a range of directions. Electromyographic signals were collected from seven muscles as the subjects performed the experiment. Circular statistics methods were used to calculate a specificity index that describes how focused the activity pattern of each muscle was with respect to its principal direction of action. The results of the non-copers, copers, and uninjured subjects were then compared. The non-copers displayed significantly greater quadriceps atrophy than the copers. The most profound differences were observed in the vastus lateralis muscle. The non-copers also displayed diminished vastus lateralis and lateral gastrocnemius muscle control. Little differences were observed in the results of the copers and uninjured subjects. In general, the copers' results fell between those of the non-copers and uninjured subjects. The results of this study suggest that quadriceps muscle function is a critical factor in the differential response to ACL injury.  相似文献   

4.
The anterior cruciate ligament (ACL) is the most commonly-injured knee ligament during sporting activities. After injury, most individuals experience episodes of the knee giving way during daily activities (non-copers). Non-copers demonstrate asymmetrical quadriceps strength and movement patterns, which could have long-term deleterious effects on the integrity of the knee joint. The purpose of this study was to determine if non-copers resolve their strength and movement asymmetries within two years after surgery. 26 Non-copers were recruited to undergo pre-operative quadriceps strength testing and 3-dimensional gait analysis. Subjects underwent surgery to reconstruct the ligament followed by physical therapy focused on restoring normal range of motion, quadriceps strength, and function. Subjects returned for quadriceps strength testing and gait analysis six months and two years after surgery. Acutely after injury, quadriceps strength was asymmetric between limbs, but resolved six months after surgery. Asymmetric knee angles, knee moments, and knee and hip power profiles were also observed acutely after injury and persisted six months after surgery despite subjects achieving symmetrical quadriceps strength. Two years after surgery, quadriceps strength in the involved limb continued to improve and most kinematic and kinetic asymmetries resolved. These findings suggest that adequate quadriceps strength does not immediately resolve gait asymmetries in non-copers. They also suggest that non-copers have the capacity to improve their quadriceps strength and gait symmetry long after ACL reconstruction.  相似文献   

5.
Rupture of anterior cruciate ligament (ACL) undermines normal activity and function of the knee joint and places it at higher risk of re-injury and degeneration. ACL reconstruction surgery neither necessarily ensures return to pre-injury activities nor alleviates risk of long-term degeneration. Here in this computational investigation of a lower-extremity hybrid model at heel strike (HS) of gait, we search for factors that influence the stability of the joint and hence the distinct performances between post-ACL injury copers and non-copers. Due to the very unstable state of the joint under the mean gait input data, joint rotations-moments, posterior tibial slope (PTS), and cocontraction were altered within the reported data in the literature and the effects on the joint stability (anterior tibial translation (ATT) and critical muscle stiffness coefficient (qcr)) were investigated. Results indicate that, in presence of both a small extension moment (0.1 or 0.2 Nm/kg) and a flexion rotation (∼5–8°), ACL-deficient (ACL-D) knee joint stability substantially improves to levels computed in the pre-injury intact joint. In addition, low cocontraction levels of 1–3% (in hamstrings and quads only and not in gastrocnemii) and reduced PTS (by 5°) further improve ACL-D joint stability. Therefore for a stable joint with ATT < 3 mm and qcr < 25 similar to those in the intact knee at HS, higher flexion angles (>5°) and a small extension moment (∼0.1–0.2 Nm/kg) (i.e., higher activity in hamstrings than quads) are required. A lower posterior tibial slope (by 5°) and a small minimum cocontraction level (1–3%) in hamstrings and quads (but not in gastrocnemii) are also beneficial. These results identify mechanisms likely in play at HS in gait of copers when compared to non-copers.  相似文献   

6.
While the increased incidence of serious knee injuries in female athletes is well established, the underlying neuromuscular mechanisms related to the elevated ACL injury rate has yet to be delineated. Video analysis of ACL injury during competitive sports play indicates a common body position associated with non-contact ACL injury; the tibia is externally rotated, the knee is close to full extension, the foot is planted and as the limb is decelerated it collapses into valgus. The purpose of the current prospective study was to evaluate gender differences in quadriceps muscle activation strategies when performing a physically challenging, but reproducible maneuver that mimics the high ACL injury risk position (in the absence of high velocity and high loads). Twenty physically active college-aged subjects (10 male and 10 female) performed multiple sets of the prescribed exercise. EMG recordings were employed to measure the ratio of activation between the medial and lateral quadriceps during the 4, 8, 12, 16, and 20th sets of exercise. Females demonstrated decreased RMS medial-to-lateral quadriceps ratios compared to males (F(1,18)=5.88, p=0.026). There was no main effect of set number on RMS quadriceps ratio (p>0.05). The results of this study suggest that females utilize neuromuscular activation strategies which may contribute to "dynamic valgus" and ACL rupture when performing high-risk maneuvers.  相似文献   

7.
Theoretical compensation after anterior cruciate ligament (ACL) tear could cause quadriceps weakness and hamstring activation, preventing anterior tibial subluxation and affecting the expected hamstring-to-quadriceps ratio. Although quadriceps weakness often occurs after ACL tears, it remains unclear whether hamstring strength and hamstring-to-quadriceps ratio increase in ACL deficient knees. This meta-analysis compared the isokinetic muscle strength of quadriceps and hamstring muscles, and the hamstring-to-quadriceps ratio, of the injured and injured limbs of patients with ACL tears. This meta-analysis included all studies comparing isokinetic thigh muscle strengths and hamstring-to-quadriceps ratio in the injured and uninjured legs of patients with ACL tear, without or before surgery. Thirteen studies were included in the meta-analysis. Quadriceps and hamstring strengths were 22.3 N∙m (95% CI: 15.2 to 29.3 N∙m; P<0.001) and 7.4 N∙m (95% CI: 4.3 to 10.5 N∙m; P<0.001) lower, respectively, on the injured than on the uninjured side. The mean hamstring-to-quadriceps ratio was 4% greater in ACL deficient than in uninjured limbs (95% CI: 1.7% to 6.3%; P<0.001). Conclusively, Decreases were observed in both the quadriceps and hamstring muscles of patients with ACL tear, with the decrease in quadriceps strength being 3-fold greater. These uneven reductions slightly increase the hamstring-to-quadriceps ratio in ACL deficient knees.  相似文献   

8.
The hamstring muscles have been recognized as an important element in compensating for the loss of stability in the ACL-deficient knee, but it is still not clear whether the hamstring muscle force can completely compensate for the loss of ACL, and the consequences of increased hamstring muscle force. A two-dimensional anatomical knee model in the sagittal plane was developed to examine the effect of various levels of hamstring muscle activation on restraining anterior tibial translation in the ACL-deficient knee during level walking. The model included the tibiofemoral and patellofemoral joints, four major ligaments, the medial capsule, and five muscle units surrounding the knee. Simulations were conducted to determine anterior tibial translation and internal joint loading at a single selected position when the knee was under a peak external flexion moment during early stance phase of gait. Incremental hamstring muscle forces were applied to the modeled normal and the ACL-deficient knees. Results of simulations showed that the ACL injury increased the anterior tibial translation by 11.8mm, while 56% of the maximal hamstring muscle force could reduce the anterior translation of the tibia to a normal level during the stance phase of gait. The consequences of increased hamstring muscle force included increased quadriceps muscle force and joint contact force.  相似文献   

9.
Coactivation of knee flexors during knee extension assists in joint stability by exerting an opposing torque to the anterior tibial displacement induced by the quadriceps. This opposing torque is believed to be generated by eccentric muscle actions that stiffen the knee, thereby attenuating strain to joint ligaments, particularly the anterior cruciate ligament (ACL). However, as the lengths of knee muscles vary with changes in joint position, the magnitude of flexor/extensor muscle force coupling may likewise vary, possibly affecting the capacity for active knee stabilization. The purpose of this study was to assess the effect of changes in movement speed and joint position on eccentric/concentric muscle action relationships in the knees of uninjured (UNI) and post-ACL-surgery (INJ) subjects (n = 14). All subjects were tested for maximum eccentric and concentric torque of the contralateral knee flexors and extensor muscles at four isokinetic speeds (15 degrees-60 degrees x s(-1)) and four joint position intervals (20 degrees-60 degrees of knee flexion). Eccentric flexor torque was normalized to the percentage of concentric flexor torque generated at each joint position interval for each speed tested (flexor E-C ratio). In order to estimate the capacity of the knee flexors to resist active knee extension, the eccentric-flexor/concentric-extensor ratios were also computed for each joint position interval and speed (flexor/extensor E-C ratio). The results revealed that eccentric torque surpassed concentric torque by 3%-144% across movement speeds and joint position intervals. The magnitude of the flexor E-C ratio and flexor/extensor E-C increased significantly with speed in both groups of subjects (P < 0.05) and tended to rise with muscle length as the knee was extended; peak values were generated at the most extended joint position (20 degrees-30 degrees). Although torque development patterns were symmetrical between the contralateral limbs in both groups, between-group comparisons revealed significantly higher flexor/extensor E-C ratios for the INJ group compared to the UNI group (P < 0.05), particularly at the fastest speed tested (60 degrees x s(-1)). The results indicate that joint position and movement speed influence the eccentric/concentric relationships of knee flexors and extensors. The INJ subjects appeared to accommodate to surgery by developing the eccentric function of their ACL and normal knee flexors, particularly at higher speeds and at more extended knee joint positions. This may assist in the dynamic stabilization of the knee at positions where ACL grafts have been reported to be most vulnerable to strain.  相似文献   

10.
The purpose of this study was to elucidate the most successful feed-forward strategies responsible for enhancing dynamic restraint following anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR). Ten male ACL deficient (ACLD) subjects (18–35 years) together with 27 matched males who had undergone ACLR (14 using a patella tendon graft and 13 using a combined semitendinosus and gracilis graft) and 22 matched-control subjects were recruited. After their knee functionality (0- to 100-point scale) was rated using the Cincinnati Knee Rating System, each subject performed a maximal, countermovement hop for distance on their involved limb while EMG data were collected from the vastus lateralis (VL), vastus medialis (VM), semitendinosus (ST) and biceps femoris (BF) muscles. Acceleration transients at the proximal tibia were recorded using a uniaxial accelerometer mounted at the level of the tibial tuberosity. Whilst pre-programmed muscle activation strategies and tibial acceleration transients when landing from a single-leg long hop for distance were not contingent upon ACL status, a number of significant correlations were identified between neuromuscular variables and knee functionality of ACLD and ACLR subjects. Increased hamstring preparatory activity together with a greater ability to control tibial motion during dynamic deceleration was associated with higher levels of knee functionality in the ACLD subjects. Successful feed-forward strategies following ACLR were related to graft selection; STGT subjects with superior knee function activated their quadriceps earlier and were better able to synchronise peak hamstring muscle activity closer to initial ground contact whilst more functional PT subjects demonstrated enhanced tibial control despite a lack of evidence supporting modified pre-programmed muscular activation patterns. Our conclusion was that more functional individuals used sensory feedback to build treatment-specific, feed-forward strategies to enhance dynamic restraint when performing a task known to stress the ACL.  相似文献   

11.
Recently, a training program that includes perturbation of support surfaces has been shown to allow most active individuals with ACL injury who pass a screening examination to successfully return to high level activities. The purpose of this study was to identify the effect of this rehabilitation program on involved side muscle activation during walking in subjects with acute ACL rupture and to determine if the activation changes were coincident with improved function. Nine subjects with an acute, unilateral ACL injury or rupture of an ACL graft, who met the screening examination criteria, received ten sessions of rehabilitation that included perturbation training. Motion analysis of five self-paced walking trials were performed before and after training. Electromyographic (EMG) data were collected during stance. After training during walking, the vastus lateralis (VL) integral of activity increased, and relationships between muscles were significantly altered. During walking, VL activation variables were dependent on lateral hamstrings (LH) and/or the soleus (SOL) activation, while no relationships were found before training. Function improved after training, and all subjects returned to their pre-injury activities without experiencing instability. The relationships formed between muscles post-training suggests that perturbation training enhances dynamic knee stability by inducing a well-coordinated strategy among muscles that affect tibial translation.  相似文献   

12.
This study tested the hypotheses that in patients with a successful anterior cruciate ligament (ACL) reconstruction, the internal–external rotation, varus–valgus, and knee flexion position of reconstructed knees would be different from uninjured contralateral knees during walking. Twenty-six subjects with unilateral ACL reconstructions (avg 31 years, 1.7 m, 68 kg, 15 female, 24 months past reconstruction) and no other history of serious lower limb injury walked at a self-selected speed in the gait laboratory, with the uninjured contralateral knee as a matched control. Kinematic measurements of tibiofemoral motion were made using a previously-described point-cluster technique. Repeated-measures ANOVA (α=0.017) was used to compare ACL-reconstructed knees to their contralateral knees at four distinct points during the stance phase of walking. An offset towards external tibial rotation in ACL-reconstructed knees was maintained over all time points (95%CI 2.3±1.3°). Twenty-two out of twenty-six individuals experienced an average external tibial rotation offset throughout stance phase. Varus–valgus rotation and knee flexion were not significantly different between reconstructed and contralateral knees. These findings show that differences in tibial rotation during walking exist in ACL reconstructed knees compared to healthy contralateral knees, providing a potential explanation why these patients are at higher risk of knee osteoarthritis in the long-term.  相似文献   

13.
ACL tear is a major concern among athletes, coaches and sports scientists. More than taking the athlete away from training and competition, ACL tear is a risk factor for early-onset of knee osteoarthritis, and, therefore addressing strategies to avoid such injury is pertinent not only for competitive athletes, but for all physically active subjects. Imbalances in the prelanding myoelectric activity of the hamstrings and quadriceps muscles have been linked to ACL injuries. We investigated the effect of landing from different heights on prelanding myoelectric activity of the hamstrings and quadriceps muscles in recreational athletes. Thirty recreational athletes (15 male and 15 female) performed three bilateral drop jumps from two different heights; 20 cm and 40 cm while myoelectric activity of the vastus medialis, rectus femoris, biceps femoris and medial hamstrings were collected. When increasing the height of drop landing tasks prelanding normalized myoelectric activity of the quadriceps was increased by 15–20% but no significant changes were found for the hamstrings. Female athletes exhibited higher activity of the medial hamstrings compared to their male counterparts. We concluded that increasing the height of drop landing tasks is associated with increased myoelectric activity of the quadriceps but not the hamstrings in recreational athletes. These differences in muscle activity may be related to increased risk for ACL injury when the height is increased. Female athletes demonstrated higher recruitment of the medial hamstrings.  相似文献   

14.
We present findings on the way in which to use electromyographic (EMG) measurements from muscles acting on the knee in planning rehabilitation of subjects after rupture of anterior cruciate ligament (ACL). ACL subjects demonstrated an earlier recruitment and a tendency to prolonged activity in muscles around the deficient knee as compared with a control group. Especially the hamstring lateralis and the gastrocnemius medialis (GM) muscles showed an earlier EMG onset and a longer EMG burst duration. The clinical relevance of the EMG findings was assessed by comparing the muscle coordination and relative levels of activity between a functionally excellent/good and a functionally poor ACL patient group. Significant differences between the two groups were noted in EMG onset and burst duration of the GM muscle. A rehabilitation program based on the EMG findings from the GM muscle was designed. In this program, the ACL subjects with poor stability were trained to change the EMG activity of the gastrocnemius muscles according to the recruitment pattern of the good/excellent ACL-group. We were able to train the subjects to change their muscle recruitment and to improve their knee stability. The stability of the knee joint depends on the stiffness of the muscles and ligaments around and within the knee. We discuss the importance of the gastrocnemius muscles with regard to knee joint stiffness.  相似文献   

15.
The role played by anatomical factors in ACL injury remains elusive. In this study, objective methods were used to characterize ACL volume, tibial slopes and notch geometry from ACL-injured and matched-control subjects. The study tested four hypotheses: (1) the medial tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, (2) the lateral tibial plateau slope is steeper posteriorly in the injured group compared to the non-injured group, (3) the femoral intercondylar notch dimensions are smaller in the injured group compared to the non-injured group and (4) the ACL volume, tibial plateau slopes and intercondylar notch dimensions are all independent of each other. Fifty-four subjects were divided into two groups, those who had suffered a non-contact ACL injury and those who still had two healthy ACLs, matched to the injured subjects by gender, age, height and weight. The lateral tibial plateaus in the uninjured contralateral knees of the injured subjects had a significantly steeper posterior slope (1.8° vs. ?0.3°), a factor that potentially contributed to the ACL injury in the opposite knee. The intercondylar notch dimensions were found to be smaller in the injured subjects, potentially putting the ACL at risk of impingement, and intercondylar notch volume was correlated to ACL volume (r=0.58). Discriminant analysis showed that the notch width at the inlet was the best single predictor of ACL injury.  相似文献   

16.
The objective of this study is to determine how kinematical parameters and electromyography data of selected muscles may change as a result of anterior cruciate ligament (ACL) deficiency and following ACL reconstruction. The study was conducted on 25 anterior cruciate ligament deficient subjects prior to and 6 weeks, 4 months, 8 months and 12 months following ACL reconstructive surgery using the bone-patellar tendon-bone technique. Gait analysis was performed by applying the zebris three-dimensional ultrasound-based system with surface electromyograph (zebris). Kinematic data were recorded for the lower limb. The muscles surveyed include vastus lateralis and medialis, biceps femoris and adductor longus. The results obtained from the injured subjects were compared with those of 51 individuals without any ACL damage whatsoever. Acute ACL deficient patients exhibited a quadriceps avoidance pattern prior to and 6 weeks following surgery. No quadriceps avoidance phenomenon develops in chronic ACL deficient patients. In operated individuals, tempo-spatial parameters and the knee angle regained a normal pattern for the ACL-deficient limb during gait as early as 4 months following surgery. However, the relative ACL movement parameter, which describes the tibial translation into the direction of ACL, and the EMG traces show no significant statistical difference compared with the same values of the healthy control group just 8 months following surgery. The analysis of spatial-temporal parameters and EMG traces show that the development of a quadriceps avoidance pattern is less common than previously reported. These data suggest that anterior cruciate ligament deficiency and reconstruction produce considerable changes in the lower extremity gait pattern. The results suggest that gait parameters tend to shift towards a normal value pattern; and the re-establishment of pre-injury gait patterns-including the normal biphase of muscles-takes at least 8 months to occur.  相似文献   

17.
Whole-body vibration (WBV) has been shown to enhance muscle activity via reflex pathways, thus having the potential to contrast muscle weakness in individuals with rupture of the anterior cruciate ligament (ACL). The present study aimed to compare the magnitude of neuromuscular activation during WBV over a frequency spectrum from 20 to 45 Hz between ACL-deficient and healthy individuals. Fifteen males aged 28±4 with ACL rupture and 15 age-matched healthy males were recruited. Root mean square (RMS) of the surface electromyogram from the vastus lateralis in both limbs was computed during WBV in a static half-squat position at 20, 25, 30, 35, 40 and 45 Hz, and normalized to the RMS while maintaining the half-squat position without vibration. The RMS of the vastus lateralis in the ACL-deficient limb was significantly greater than in the contralateral limb at 25, 30, 35 and 40 Hz (P<0.05) and in both limbs of the healthy participants (dominant limb at 25, 30, 35, 40 and 45 Hz, P<0.05; non dominant limb at 20, 25, 30, 35, 40 and 45 Hz, P<0.05). The greater neuromuscular activity in the injured limb compared to the uninjured limb of the ACL-deficient patients and to both limbs of the healthy participants during WBV might be due to either augmented excitatory or reduced inhibitory neural inflow to motoneurons of the vastus lateralis through the reflex pathways activated by vibratory stimuli. The study provides optimal WBV frequencies which might be used as reference values for ACL-deficient patients.  相似文献   

18.
Anterior cruciate ligament (ACL) rupture ranks among the most common injuries in sports. The incidence of ACL injuries is considerably higher in females than in males and the underlying mechanisms are still under debate. Furthermore, it has been suggested that muscle fatigue can be a risk factor for ACL injuries.We investigated gender differences in hamstring reflex responses and posterior-anterior tibial translation (TT) before and after fatiguing exercise. We assessed the isolated movement of the tibia relative to the femur in the sagittal plane as a consequence of mechanically induced TT in standing subjects. The muscle activity of the hamstrings was evaluated. Furthermore, isometric maximum voluntary torque (iMVT) and rate of torque development (RTD) of the hamstrings (H) and quadriceps (Q) were measured and the MVT H/Q as well as the RTD H/Q ratios were calculated.After fatigue, reflex onset latencies were enhanced in women. A reduction of reflex responses associated with an increased TT was observed in females. Men showed no differences in these parameters. Correlation analysis revealed no significant associations between parameters for TT and MVT H/Q as well as RTD H/Q.The results of the present study revealed that the fatigue protocol used in this study altered the latency and magnitude of reflex responses of the hamstrings as well as TT in women. These changes were not found in men. Based on our results, it is conceivable that the fatigue-induced decrease in neuromuscular function with a corresponding increase in TT probably contributes to the higher incidence of ACL injuries in women.  相似文献   

19.
This study investigated the effect of hamstring co-contraction with quadriceps on the kinematics of the human knee joint and the in-situ forces in the anterior cruciate ligament (ACL) during a simulated isometric extension motion of the knee. Cadaveric human knee specimens (n = 10) were tested using the robotic universal force moment sensor (UFS) system and measurements of knee kinematics and in-situ forces in the ACL were based on reference positions on the path of passive flexion/extension motion of the knee. With an isolated 200 N quadriceps load, the knee underwent anterior and lateral tibial translation as well as internal tibial rotation with respect to the femur. Both translation and rotation increased when the knee was flexed from full extension to 30 of flexion; with further flexion, these motion decreased. The addition of 80 N antagonistic hamstrings load significantly reduced both anterior and lateral tibial translation as well as internal tibial rotation at knee flexion angles tested except at full extension. At 30 of flexion, the anterior tibial translation, lateral tibial translation, and internal tibial rotation were significantly reduced by 18, 46, and 30%, respectively (p<0.05). The in-situ forces in the ACL under the quadriceps load were found to increase from 27.8+/-9.3 N at full extension to a maximum of 44.9+/-13.8 N at 15 of flexion and then decrease to 10 N beyond 60 of flexion. The in-situ force at 15 was significantly higher than that at other flexion angles (p<0.05). The addition of the hamstring load of 80 N significantly reduced the in-situ forces in the ACL at 15, 30 and 60 of flexion by 30, 43, and 44%, respectively (p<0.05). These data demonstrate that maximum knee motion may not necessarily correspond to the highest in-situ forces in the ACL. The data also suggest that hamstring co-contraction with quadriceps is effective in reducing excessive forces in the ACL particularly between 15 and 60 of knee flexion.  相似文献   

20.
The hamstring muscles have the potential to counteract anterior shear forces at the knee joint by co-contracting during knee extension efforts. Such a muscle recruitment pattern might protect the anterior cruciate ligament (ACL) by reducing its strain. In this study we investigated to what extent co-activation of the knee flexors during extension efforts is compatible with the hypothesis that this co-activation serves to counteract anterior tibial shear forces during isometric knee extension efforts in healthy subjects. To this aim, it is investigated whether co-activation varies with the required knee extension moment, with the knee joint angle, and with the position of the external flexing force relative to the knee joint. With unaltered moment and muscle activation, distal positioning of the flexing force on the tibia causes higher resultant (muscular plus external) forward shear forces at the knee as compared to proximal positioning. In ten subjects, knee flexor and extensor EMG was measured during a quasi-isometric positioning task for a range (5-50 degrees) of knee flexion angles. It was found that the co-activation of the knee flexors increased with the extension moment, but this increase was less than proportional (p<0.001). The extension moment increased 2.7 to 3.4 times, whereas the activation of Biceps Femoris and Semitendinosus increased only a factor 1.3 to 2.0 (joint angle dependent). Furthermore, a strong increase in co-activation was seen near full extension of the knee joint. The position of the external extension load on the tibia did not affect the level of co-contraction. It is argued that these results do not suggest a recruitment pattern that is directed at reduction of anterior shear forces in the knee joint during sub-maximal isometric knee extension efforts in healthy subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号