首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The effect of epostane [(2 alpha,4 alpha,5 alpha,17 beta)-4,5-epoxy-17-hydroxy-4,17-dimethyl-3-oxo- androstane-2-carbonitrile] on the conversion of pregnenolone to progesterone and of dehydroepiandrosterone (DHA) to androstenedione was studied in human term placental microsomes and in comparison with human ovarian and adrenal microsomes. Using pregnenolone as substrate, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity in the three tissues had a similar Km (3-6 microM) but Vmax ranged from 1.3 nmol/mg protein per min in ovary to 10 nmol/mg protein per min in placenta. Epostane inhibited 3 beta-HSD activity in all three tissues with the characteristics of a pure competitive inhibitor: mean Ki values were 1.7 microM for placenta, 0.5 microM for adrenal and 0.1 microM for ovary. Moreover, in placental microsomes epostane inhibited the conversion of DHA to androstenedione with a Ki of 0.6 microM. The mechanism of action of epostane explains its effectiveness in blocking progesterone synthesis during the luteal phase and in pregnancy in women, and its strong anti-steroidogenic effect in other endocrine tissues in vitro.  相似文献   

2.
R B Sharp  T M Penning 《Steroids》1988,51(5-6):441-457
The biosynthesis of progesterone from [3H]pregnenolone was curvilinear over a 6 h time course in human placenta cytotrophoblasts and in human placenta choriocarcinoma cells (JEG-3 cells). Mass measurements determined independently by radioimmunoassay indicate that the progesterone synthesized by cytotrophoblasts (21.0 +/- 5.20 ng/6 h/mg protein) is substantially higher than that synthesized by the JEG-3 cells (4.48 +/- 0.56 ng/6 h/mg protein). Two tight binding inhibitors of 3 beta-hydroxysteroid dehydrogenase (2 alpha-cyanoprogesterone I and cyanoketone II), and a potent inhibitor of the microsomal conversion of pregnenolone to progesterone (2 alpha-bromo-5 alpha-androstan-3-one-17 beta-acetate III) were compared as inhibitors of progesterone synthesis in the two cell-types. Compounds I and II were very potent inhibitors yielding IC50 values of between 10 and 20 nM. At higher concentrations (100 nM - 1,000 nM) compound I promoted a complete cessation of progesterone synthesis which could be reversed by washing the cells free of inhibitor. By contrast compound III was ineffectual as an inhibitor yielding an IC50 value greater than 10 microM. This 1,000-fold difference in inhibitory potency suggests that 2 alpha-cyano-substituted steroids display an unusual capacity to inhibit progesterone biosynthesis and secretion in normal and transformed human cells.  相似文献   

3.
Microsomes isolated from complete hydatidiform moles (CHM) were able to convert [3H]pregnenolone to [3H]progesterone which indicates the presence of 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD) activity. The kinetic parameters found (Km = 0.63 microM and Vmax = 1-3.05 nmol/min/mg of protein) were like those observed in microsomes from normal early placenta (NEP) of similar gestational age (herein) and term placenta suggesting that the enzymes from the three sources are kinetically similar. Testosterone, progesterone and estradiol in a dose range of 0.05-5 mumol/l inhibited differently the in vitro conversion of [3H]pregnenolone to [3H]progesterone in a dose-dependent manner. The steroid concentrations necessary to inhibit the conversion of pregnenolone to progesterone by 50% (ID50) in CHM were 0.1 microM for testosterone, 0.6 microM for progesterone and 3 microM for estradiol, whereas in NEP they were 2.5, 1 and 5 microM respectively. The Ki values calculated from these ID50 in CHM together with the reported levels of endogenous steroids indicate that the accumulation of testosterone and progesterone inside the molar vesicle could physiologically regulate the rate of further conversion of pregnenolone to progesterone. The present findings could provide an explanation for the low level of progesterone in patients with CHM in the second trimester of pregnancy which in turn may directly or indirectly affect the spontaneous expulsion of this aberrant tissue.  相似文献   

4.
Human placental 3 beta-hydroxysteroid dehydrogenase/5----4-ene isomerase (3 beta-HSD) purified from human placenta transforms C-21 (pregnenolone and 17 alpha-hydroxy pregnenolone) as well as C-19 (dehydroepiandrosterone and androst-5-ene-3 beta, 17 beta-diol) steroids into the corresponding 3-keto-4-ene-steroids and is thus involved in the biosynthesis of all classes of hormonal steroids. Trilostane, epostane and cyanoketone are potent inhibitors of 3 beta-HSD with Ki values of approximately 50 nM. 4-MA, a well known 5 alpha-reductase inhibitor, is also a potent inhibitor of 3 beta-HSD with a Ki value of 56 nM. Synthetic progestin compounds such as promegestone and RU2323 show relatively strong inhibitory effects with Ki values of 110 and 190 nM, respectively. Cyproterone acetate, a progestin used in the treatment of hirsutism, acne and prostate cancer as well as norgestrel and norethindrone that are widely used as oral contraceptives also inhibit 3 beta-HSD activity at Ki values of 1.5, 1.7 and 2.5 microM, respectively.  相似文献   

5.
The effects of 50 microM of progesterone (P4), estradiol (E2), estrone (E1), estriol (E3), dehydroepiandrosterone (DHIA), androstenedione (delta 4) and testosterone (T) on the bioconversion of [3H]pregnenolone (6 nM) to [3H]P4 were investigated by incubating 200 mg of tissue fragments as well as equivalent aliquots of microsomes from human term placenta during 30 min. All the steroids assayed, except E3, significantly inhibited the [3H]P4 formation in a microsome incubation system with respect to the control assay (P less than 0.001). Conversely in a tissue incubation system. P4, E1 as well as E3 had no effect on [3H]pregnenolone bioconversion while E2 slightly decreased the [3H]P4 formation (P less than 0.05) compared with the control. A significant inhibition was observed in this system with the other steroids (P less than 0.001). To investigate these apparent different results of inhibition-noninhibition of the same steroids irrespective of the system of incubation used, the effects of P4, E2 and T on 3 beta-hydroxysteroid dehydrogenase/isomerase (3 beta-HSD) activity were studied in tissue fragments and microsomes in kinetic terms. The results found indicate that these steroids inhibited in a competitive fashion the 3 beta-HSD activity in both systems. The different Ki values found in tissue fragments and microsomes respectively for P4 (1.8 microM vs 0.5 microM), E2 (2.3 microM vs 0.6 microM) and T (0.25 microM vs 0.3 microM) explain the bioconversion results obtained in presence of 50 microM of the same steroids. These results include inhibition of [3H]P4 formation by T in tissue fragments as well as in microsomes whereas P4 and E2 inhibited the [3H]P4 formation only in microsomes. Furthermore, the comparison of these Ki values with the available data of intraplacental and circulating concentrations of the same steroids in human term pregnancy suggest that only P4 would be expected to cause marked 3 beta-HSD inhibition in physiological conditions.  相似文献   

6.
3 beta-Hydroxysteroid dehydrogenase was purified from bovine adrenocortical microsomes and its properties were studied. The purified dehydrogenase gave a single homogeneous protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed no steroid delta 5-delta-4 isomerase activity. The molecular weight of the dehydrogenase was estimated to be 41,000 for the monomer and the isoelectric point was determined to be at pH 6.3. The Km values of the dehydrogenase were 6.2 microM for NAD+, 4.9 mM for NADP+, 2.0 microM for pregnenolone, and 5.3 microM for 17 alpha-hydroxypregnenolone. The mechanism of inhibition by trilostane of the dehydrogenase was also examined kinetically. The inhibition was found to be competitive, with Ki values of 0.14 microM for 17 alpha-hydroxypregnenolone and 0.38 microM for pregnenolone.  相似文献   

7.
Bifunctional thrombin inhibitors based on the sequence of hirudin45-65   总被引:1,自引:0,他引:1  
The interaction of alpha-thrombin with the hirudin (HV1) fragment N alpha-acetyl desulfo hirudin45-65 (P51) was investigated. Kinetic analysis revealed that P51 inhibits the proteolysis of a tripeptidyl substrate with Ki = 0.72 +/- 0.13 and 0.11 +/- 0.03 microM for bovine and human alpha-thrombins, respectively. The inhibition was partially competitive, affecting substrate binding to the enzyme-inhibitor complex by a factor alpha = 2 (bovine) and alpha = 4 (human) characteristic of hyperbolic inhibitors. P51 also inhibited thrombin-induced fibrin clot formation with IC50 values of 0.94 +/- 0.20 and 0.058 +/- 0.006 microM for bovine and human alpha-thrombins, respectively. The enhanced antithrombin activity for human thrombin could be attributed to species variations in the putative auxiliary "anion" exosite since N alpha-acetyl desulfo hirudin55-65 displayed the same rank order of potency shift in a clotting assay without inhibiting the amidolytic activity of either enzyme. From these observations, a potent thrombin inhibitor was designed having modified residues corresponding to the P1 and P3 recognition sites. N alpha-Acetyl[D-Phe45, Arg47] hirudin45-65 (P53) emerged as a pure competitive inhibitor with a Ki = 2.8 +/- 0.9 nM and IC50 = 4.0 +/- 0.8 nM (human alpha-thrombin) and is designated as a "bifunctional" inhibitor. Its enhanced potency could be explained by a cooperative intramolecular interaction between the COOH-terminal domain of the inhibitor and the auxiliary exosite of thrombin on the one hand, and the modified NH2-terminal residues with the catalytic site on the other.  相似文献   

8.
Wheat embryo Ca2+-dependent protein kinase (CDPK) is inhibited by a variety of polypeptides including actin, gramicidin S, melittin, protamine, various histone preparations, histone H4 and by basic amino-acid homopolymers. Melittin (Ki 9 microM) is a non-competitive inhibitor of wheat germ CDPK and also inhibits wheat leaf CDPK and silver beet leaf CDPKs. Protamine inhibits wheat germ CDPK in an apparently competitive fashion (Ki 0.2 microM) and is also a potent, albeit less effective, inhibitor of the leaf CDPKs. Various basic amino-acid homopolymers are also potent, apparently competitive inhibitors of wheat embryo CDPK, namely poly(L-lysine) (IC50 2 nM), poly(L-ornithine) (IC50 3 nM) and poly(L-arginine) (IC50 17 nM) and also inhibit the leaf CDPKs, albeit at higher concentrations. Histone H4 and various calf thymus histone preparations inhibit wheat embryo CDPK in a fashion that is not competitive and calmodulin can substantially reverse such inhibition.  相似文献   

9.
Compound 1 [3-(4-aminophenyl)-3-cyclohexylpiperidine-2,6-dione] is a highly potent nonsteroidal aromatase inhibitor of the aminoglutethimide (AG)-type containing an asymmetric carbon atom. 1 and its enantiomers (+)-1 and (-)-1 inhibited human placental aromatase by 50% at 0.3, 0.15, and 4.6 microM, respectively (IC50 AG = 37 microM). A competitive type of inhibition was observed for 1 and (+)-1 (Ki 1 = 3.9 nM, Ki (+)-1 = 2.0 nM, Ki AG = 408 nM). Using solubilized high spin aromatase, 1 showed a type II difference spectrum indicating the interaction of the amino nitrogen with the central Fe(III)-ion of the cytochrome P450 heme component. 1 and (+)-1 inhibited cholesterol side chain cleavage enzyme (desmolase) by 50% at 67 and 82 microM, respectively (IC50 AG = 29 microM). In ACTH-stimulated rat adrenal tissue in vitro, 1 was less active in inhibiting aldosterone and corticosterone production compared to AG (IC50s, 1, 130 and 140 microM, AG, 80 and 50 microM, respectively). In vivo, 1 was superior to AG, too: it showed a stronger inhibition of the plasma estradiol concentration of pregnant mares' serum gonadotropin-primed SD rats, the activity residing mainly in the (+)-enantiomer [ovarian vein: (+)-1, 0.31 mg/kg: 81% inhibition, (-)-1, 0.31 mg/kg: 6%, AG, 1.25 mg/kg: 35%]. Furthermore 1 was much more active in inhibiting the testosterone-stimulated tumor growth of the ovariectomized 9,10-dimethyl-1,2-benzanthracene tumor-bearing SD rat (postmenopausal model). Up to a dose of 600 mg/kg of 1 no central nervous symptom depressive effects were observed in the motility test and the rotarod experiment, whereas AG exhibited ED50s of 62 and 164 mg/kg, respectively.  相似文献   

10.
Trilostane is a competitive inhibitor of 3β-hydroxysteroid dehydrogenase. Invitro, the drug inhibits conversion of pregnenolone to progesterone but does not alter conversion of cholesterol to pregnenolone nor progesterone to corticoid hormones. When given orally to rats, trilostane inhibits corticosterone and aldosterone production and elevates circulating levels of pregnenolone at doses lower than those that produce adrenal hypertrophy or inhibit gonadal steroidogenesis.  相似文献   

11.
Sphingosine and other protein kinase C inhibitors were tested for their ability to inhibit aldosterone synthesis by bovine adrenal glomerulosa cells. Sphingosine inhibited angiotensin (AII)-stimulated aldosterone synthesis (IC50 of 5 microM). At doses that totally blocked steroidogenesis, sphingosine did not affect protein synthesis or [125I]AII binding to cells. Sphingosine also inhibited dibutyryl cyclic AMP (dbcAMP)-stimulated aldosterone synthesis. Sphingosine inhibited pregnenolone synthesis from cholesterol, but not the conversion of progesterone or 20 alpha-hydroxycholesterol to aldosterone. These results suggest that sphingosine inhibits steroidogenesis at a locus close to that where stimulation occurs by AII and dbcAMP. Other protein kinase C inhibitors were tested. Retinal, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), and staurosporine inhibited aldosterone synthesis stimulated by AII and dbcAMP. Retinal and H-7 also inhibited progesterone conversion to aldosterone, and retinal blocked [125I]AII binding. Staurosporine was more specific, inhibiting AII-stimulated aldosteronogenesis at concentrations which had little effect on conversion of progesterone to aldosterone. Because they inhibited dbcAMP stimulation, none of the inhibitors was sufficiently specific to use as a probe of the role of protein kinase C. The IC50 of sphingosine suggests that this or related products of lipid hydrolysis could act as endogenous regulators of adrenal cell function.  相似文献   

12.
Photoaffinity labeling of the epithelial sodium channel   总被引:7,自引:0,他引:7  
Sodium enters tight epithelia across the apical plasma membrane through a sodium channel, a process inhibited by submicromolar concentrations of amiloride and benzamil. Using membrane vesicles from bovine kidney cortex, we found that sodium transport through the sodium channel was inhibited by benzamil with an IC50 of 4 nM. Amiloride (IC50 = 400 nM) was a weaker inhibitor of sodium transport. [3H]Benzamil bound to the vesicles at a single class of high affinity binding sites with a Kd of 5 nM, the similarity of which to the IC50 suggests that these binding sites are associated with the sodium channel. Amiloride displaced bound [3H]benzamil with a Ki of 2,500 nM. Bromobenzamil is a photoactive amiloride analog with potency similar to benzamil in inhibiting sodium transport (IC50 = 5 nM) and binding to the sodium channel (Kd = 6 nM). [3H]Bromobenzamil was specifically photoincorporated into three molecular weight classes of polypeptides with apparent Mr values of 176,000, 77,000, and 47,000. The photoincorporation of [3H]bromobenzamil into these three classes of polypeptides was blocked by addition of excess benzamil and by amiloride in a dose-dependent manner. These data suggest that these polypeptides are components of the epithelial sodium channel.  相似文献   

13.
In human pregnancy, placental 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase produce progesterone from pregnenolone and metabolize fetal dehydroepiandrosterone sulfate to androstenedione, an estrogen precursor. The enzyme complex was solubilized from human placental microsomes using the anionic detergent, sodium cholate. Purification (500-fold, 3.9% yield) was achieved by ion exchange chromatography (Fractogel-TSK DEAE 650-S) followed by hydroxylapatite chromatography (Bio-Gel HT). The purified enzyme was detected as a single protein band in sodium dodecylsulfate-polyacrylamide gel electrophoresis (monomeric Mr = 19,000). Fractionation by gel filtration chromatography at constant specific enzyme activity supported enzyme homogeneity and determined the molecular mass (Mr = 76,000). The dehydrogenase and isomerase activities copurified. Kinetic constants were determined at pH 7.4, 37 degrees C for the oxidation of pregnenolone (Km = 1.9 microM, Vmax = 32.6 nmol/min/mg) and dehydroepiandrosterone (Km = 2.8 microM, Vmax = 32.0 nmol/min/mg) and for the isomerization of 5-pregnene-3,20-dione (Km = 9.7 microM, Vmax = 618.3 nmol/min/mg) and 5-androstene-3,17-dione (Km = 23.7 microM, Vmax = 625.7 nmol/min/mg). Mixed substrate analyses showed that the dehydrogenase and isomerase reactions use the appropriate pregnene and androstene steroids as alternative, competitive substrates. Dixon analyses demonstrated competitive inhibition of the oxidation of pregnenolone and dehydroepiandrosterone by both product steroids, progesterone and androstenedione. The enzyme has a 3-fold higher affinity for androstenedione than for progesterone as an inhibitor of dehydrogenase activity. Based on these competitive patterns of substrate utilization and product inhibition, the pregnene and androstene activities of 3 beta-hydroxy-5-ene-steroid dehydrogenase and steroid 5----4-ene-isomerase may be expressed at a single catalytic site on one protein in human placenta.  相似文献   

14.
W Gibb 《Steroids》1981,37(1):23-31
Recent kinetic studies on the placental microsomal 3 beta-hydroxysteroid dehydrogenase have shown that apparent Km values for 3 beta-hydroxy-5-androsten-17-one (dehydroepiandrosterone) and 3 beta-hydroxy-5-pregnen-20-one (pregnenolone) are 15nM and 40nM respectively, which are orders of magnitude lower than found in earlier studies. The purpose of this study was to investigate the substrate and nucleotide specificity of the 3 beta-hydroxysteroid dehydrogenase, and the ability of various steroids to inhibit the reaction at these lower steroid concentrations. Each steroid inhibited the metabolism of the other competitively, and the Ki values obtained were not significantly different from their respective Km values. The ability of various steroids to inhibit the reaction at concentrations of 100nM was usually less than that found at micromolar concentrations. However, certain steroids showed marked inhibition. For example, estrone and estradiol-17 beta inhibit the oxidation of both substrates competitively with Ki values of between 15 and 24nM. The Km values of dehydroepiandrosterone and pregnenolone with NADP+ as cofactor are higher than those with NAD+ as cofactor and the V values are much lower. These data indicate that in human placental microsomes a single 3 beta-hydroxysteroid dehydrogenase, essentially NAD+ specific, metabolizes dehydroepiandrosterone and pregnenolone.  相似文献   

15.
Gossypol, a polyphenolic binaphthalene dialdehyde isolated from cotton meal is a potent inhibitor of lactate dehydrogenase-X purified from bovine testis. For the conversion of pyruvate to lactate the IC50 for gossypol is 200 microM for the reverse reaction the IC50 is 12 microM. Gossypol is a competitive inhibitor of NADH, Ki = 30 microM (Km = 17 microM), and NAD+, Ki = 6 microM (Km = 130 microM), and noncompetitive for pyruvate, Ki = 220 microM (Km = 224 microM), and lactate, Ki = 52 microM (Km = 5.6 mM).  相似文献   

16.
3 beta-Hydroxysteroid isomerase dehydrogenase, capable of acting on C21- and C19-3 beta-hydroxy-5-ene-steroids has been found in guinea-pig kidney at equivalent levels to those in guinea pig testes. Of the 3 beta-hydroxy-5-ene-steroids present in guinea pig serum, 21-hydroxypregnenolone occurs in highest concentration (17 nM) followed by pregnenolone (10 nM), whereas 17 alpha-hydroxy-pregnenolone and dehydroepiandrosterone occur in very low concentrations (less than 0.5 nM). Furthermore, the concentration of 21-hydroxypregnenolone relative to 11-deoxycorticosterone (the mineralocorticoid of the guinea pig), is 10:1 (Nishikawa and Strott, Steroids 41 (1983) 105-120). The apparent Km value for 21-hydroxypregnenolone, for the reaction yielding 11-deoxycorticosterone as catalysed by guinea pig kidney microsomes, was 85 nM and the Vmax 33 pmol/min per mg protein. Pregnenolone was a competitive inhibitor (apparent Ki = 5 microM) in the above reaction. A sex difference in the level of the enzyme in the kidney was found (activity in the female was one-third of that in the male) which may indicate that the enzyme is under partial androgen control. 3 beta-Hydroxysteroid isomerase dehydrogenase activity was also detected in guinea pig liver and again it was lower in the female. Whilst the exact role of 3 beta-hydroxysteroid isomerase dehydrogenase in guinea-pig kidney remains uncertain, the data suggest that it may utilise blood-borne 21-hydroxypregnenolone, the later then playing the role of a prohormone.  相似文献   

17.
The pregnene derivative, 4-pregnene-3-one-20 beta-carboxaldehyde (22-A) was evaluated as an inhibitor of 17 alpha-hydroxylase/C17,20-lyase in rat testicular microsomes and of 5 alpha-reductase in human prostatic homogenates. The effect of the compound in vivo was studied in adult male rats. The 22-A demonstrated potent and competitive inhibition of 17 alpha-hydroxylase and C17,20-lyase with Ki values 8.48 and 0.41 microM, respectively, significantly below the Km values for these two enzymes (33.75 and 4.55 microM). This compound also showed potent inhibition of 5 alpha-reductase with a Ki value of 15.6 nM (Km for this enzyme is 50 nM). By comparison, ketoconazole, a currently studied 17 alpha-hydroxylase/C17,20-lyase inhibitor for the treatment of prostatic cancer, showed less potent inhibition of 17 alpha-hydroxylase (Ki 39.5 microM) and C17,20-lyase (Ki 3.6 microM) and did not inhibit 5 alpha-reductase. Progesterone which has been reported to inhibit the 17 alpha-hydroxylase/C17,20-lyase, did not significantly reduce the production of testosterone by rat testes in vitro in comparison to controls, while the same concentration of 22-A demonstrated a 42% reduction of testosterone biosynthesis. When the adult male rats were injected s.c. with 22-A at 50 mg/day/kg for a 2 week period, the testosterone concentrations in the rat sera were significantly lower than control values (P less than 0.05), whereas serum corticosterone levels did not change. These results suggest that 22-A is a selective potent inhibitor for 17 alpha-hydroxylase and C17,20-lyase, but is more potent for the C17,20-lyase. The compound also inhibits 5 alpha-reductase, and therefore may reduce biosynthesis of testosterone and dihydrotestosterone effectively. Thus, 22-A may be useful in the treatment of problems associated with the androgen excess and prostatic cancer.  相似文献   

18.
Acylcoenzyme A:estradiol-17 beta acyltransferase in microsomes of bovine placenta cotyledons was strongly membrane bound. The enzyme was solubilised from microsomes by sodium cholate and was reconstituted into phospholipid vesicles. The apparent Km for estradiol-17 beta was 11 microM which was close to the value of 8 microM previously found with the membrane-bound enzyme. Testosterone was also a substrate for the reconstituted enzyme (apparent Km 62 microM) and was a competitive inhibitor (Ki 74 microM) of the acylation of estradiol-17 beta. Although various long-chained fatty acyl CoAs acted as acyl donors, these proved to have widely differing apparent Km values with palmitoleoyl CoA having the highest affinity (Km 24 microM) and arachidonoyl CoA the lowest affinity (Km 330 microM).  相似文献   

19.
The effect of bovine thrombomodulin on the specificity of bovine thrombin   总被引:8,自引:0,他引:8  
Bovine lung thrombomodulin is purified and used to investigate the basis of the change in substrate specificity of bovine thrombin when bound to thrombomodulin. Bovine thrombomodulin is a single polypeptide having an apparent molecular weight of 84,000 and associates with thrombin with high affinity and rapid equilibrium, to act as a potent cofactor for protein C activation and antagonist of reactions of thrombin with fibrinogen, heparin cofactor 2, and hirudin. Bovine thrombomodulin inhibits the clotting activity of thrombin with Kd less than 2.5 nM. Kinetic analysis of the effect of bovine thrombomodulin on fibrinopeptide A hydrolysis by thrombin indicates competitive inhibition with Kis = 0.5 nM. The active site of thrombin is little perturbed by thrombomodulin, as tosyl-Gly-Pro-Arg-p-nitroanilide hydrolysis and inhibition by antithrombin III are unaffected. Insensitivity of the reaction with antithrombin III is likewise observed with thrombin bound to thrombomodulin on intact endothelium. Antithrombin III-heparin, human heparin cofactor 2, and hirudin inhibit thrombin-thrombomodulin more slowly than thrombin. These effects may arise from a decrease in Ki of the inhibitors for thrombin-thrombomodulin or from changes in the active site not detected by tosyl-Gly-Pro-Arg-p-nitroanilide or antithrombin III. Bovine prothrombin fragment 2 inhibits thrombin clotting activity (Kd less than 7.5 microM) and acts as a competitive inhibitor of protein C activation (Kis = 2.1 microM). The data are consistent with a mechanism whereby thrombomodulin alters thrombin specificity by either binding to or allosterically altering a site on thrombin distinct from the catalytic center required for binding or steric accommodation of fibrinogen, prothrombin fragment 2, heparin cofactor 2, and hirudin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号