首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The susceptibility of Culex tritaeniorhynchus collected from Gwangju, Jeollabuk Province, Republic of Korea (ROK) to insecticides was evaluated under laboratory conditions using ten insecticides (7 pyrethroids and 3 organophosphates) that are currently applied by local public health centers in the ROK. Based on the values of median lethal concentration (LC50), Cx. tritaeniorhynchus larvae were most susceptible to chlorpyrifos (0.006 ppm), fenitrothion (0.022 ppm), fenthion (0.035 ppm) and bifenthrin (0.038 ppm), and were least susceptible to esbiol (1.722 ppm). In comparative resistance tests, the resistance ratios (RRs) of seven insecticides were compared among each other using two strains of Cx. tritaeniorhynchus that were collected from the same locality during 1992 and 2010. Culex tritaeniorhynchus demonstrated significantly increased RRs to pyrethroids over time, while demonstrating decreased RRs among the organophosphates. Among the pyrethroids, permethrin had the highest RR values of 182.1‐ and 833.3‐fold differences, followed by etofenprox with RRs of 138.4‐ and 224.1‐fold differences in values of LC50 and concentration that produced 90% mortality (LC90), respectively. Culex tritaeniorhynchus strains demonstrated the least amount of change in susceptibility to the organophosphates, chlorpyrifos, fenitrothion and fenthion with 0.020‐, 0.019‐ and 0.001‐fold differences in resistance ratios (RRLC50), respectively.  相似文献   

2.
Fungal metabolites are attracting attention as potential microbial insecticides, and they are anticipated to overcome the problems of pesticide resistance and environmental pollution that are associated with the indiscriminate use of conventional synthetic insecticides. The relative bioefficacies of selected fungal pathogens, Aspergillus flavus, A. niger, A. parasiticus, Fusarium sporotrichoides and Penicillium verrucosum were observed against Anopheles stephensi and Culex quinquefasciatus larvae. A. flavus demonstrated the greatest bioefficacy with 50% lethal concentration (LC50) values of 9.54 and 10.98 ppm against Anopheles stephensi and Culex quinquefasciatus larvae, respectively, after 24‐h exposure. The bioefficacy of A. flavus increased in both species with an exposure time of 48 h, with LC50 values of 7.26 and 8.55 ppm, respectively.  相似文献   

3.
The seasonal changes of insecticide resistance and stability in hymenopteran Cotesia plutellae, collected from Jianxin, Fuzhou-City, and Shangjie, Minhou-County, Fujian, China, were assessed by using a dry residual film method. The resistance to two insecticides in the field populations of C. plutellae was not stable under insecticide-free conditions in the insectarium. Compared with susceptible F11 progeny of C. plutellae in the insectarium, the resistance ratios (RR) in F0 parents were 18.4 for fenvalerate and 11.4 for cypermethrin based on LC50 at 9 hours, and 32.8 for fenvalerate and 28.5 for cypermethrin based on LC50 at 24 hours when the parasitoids were left in contact with the insecticides for 1 hour and mortalities were recorded at 9 and 24 hours, respectively. However, the RR in a field population of C. plutellae were 9.2 for fenvalerate and 12.7 for cypermethrin, if the parasitoids were left in contact with the insecticides for 24 hours. The resistances to the two pyrethroids in other field populations collected from Jianxin and Shangjie from November 2000 and July 2004 were also determined. Significant seasonal variations of resistance to the two insecticides in the field populations of C. plutellae were found. The RR were 3.0-18.4 for fenvalerate and 4.8-20.6 for cypermethrin in Jianxin populations from November 2000 to April 2002 based on LC50 at 9 h, and 2.3-13.6 for fenvalerate and 3.6-16.0 for cypermethrin in Shangjie populations from May 2002 to July 2004 based on LC50 at 24 hours. The resistance levels were high in spring and autumn and decreased sharply in summer. In addition, significant recovery from the knocked-down caused by the insecticides was found in the F0 and field populations of C. plutellae which were resistant to fenvalerate and cypermethrin if the parasitoids were left in contact with the pyrethroids for 1 hour. However, no recovery was found in susceptible F11 progeny.  相似文献   

4.
Essential oils are very popular among organic growers because they are ecologically safe, do not have mammalian toxicity, and cannot be resistant to a variety of contaminants. Four essential oils, Lemon, Lavender, Peppermint, and Neem, were tested for larvicide efficacy against the dengue fever vector Aedes aegypti larvae under laboratory conditions using dipping bioassay techniques. Among the essential oils tested, lemon, peppermint, and lavender oils showed high larvicidal activity against larvae of Ae. aegypti. Lemon oil showed the highest effects (LC50 10.676 ppm), while Peppermint, Lavender and Neem oil showed the lowest effects (LC50 21.380, 29.818 and 38.058 ppm, respectively). As a result, the mixture of lemon oil (LC50) with Peppermint oil (LC25) showed the highest co-toxicity factor, whereas the mixture of Lemon oil (LC50) with Diesel oil (LC25) showed the lowest co-toxicity factor. Based on the results of this study, it appears that essential oils may be useful as larvicides against Ae. aegypti larvae. In search of new natural larvicides, these compounds may provide an alternative to Synthetic insecticides as these are environmentally safe insecticides.  相似文献   

5.
Mosquitoes represent one of the most significant threats to human and veterinary health throughout the world. Consequently, improving strategies for the control of mosquitoes is essential. In the present study, juvenile Culex pipiens (Diptera: Culicidae), the common house mosquito, are chronically exposed to sublethal concentrations of chlorpyrifos (20% of LC50) and imidacloprid (5% of LC50), both separately and as a mixture. Developmental time, the emergence rate of adults and the expression of five selected genes involved in detoxification and resistance to pesticides are assessed. To assess the effects on oviposition choice, gravid females are forced to oviposit into cups containing water with added chlorpyrifos, imidacloprid or a mixture of both. The time required for the development of second‐ and third‐instar larvae is observed to differ significantly between treatments. Adults of C. pipiens fail to emerge from larvae hatched in both imidacloprid and the binary mixture. The expression of the four quantified detoxification genes differs significantly in third‐larval instars exposed to chlorpyrifos and/or imidacloprid compared with controls. Gravid females also fail to lay eggs on water to which either of the insecticides or the binary mixture is added, although they do lay eggs in cups containing water only. Chronic exposure to sublethal concentrations of chlorpyrifos or imidacloprid has significant adverse effects on development and thus the reproductive fitness of C. pipiens and, accordingly, could be used in the population control of these mosquitoes.  相似文献   

6.
7.
Mosquitoes are potent vectors by serving as agents to life-threatening diseases in humans. Increasing resistance in mosquitoes against existing insecticides and repellents brings new challenges and an opportunity to explore sustainable compounds. We chose six medicinal plants to screen potential bioactive compounds that could act as an insecticide. Among these, crude hexane leaf extract of Acorus calamus showed higher mortality percentage against Aedes aegypti and Culex quinquefasciatus. The LC50 and LC90 values were 151.86 ppm and 536.36 ppm, respectively, for the third instar A. aegypti larvae, and 174.70 ppm and 696.73 ppm, respectively, for C. quinquefasciatus. The treated larvae of both species showed morphological and physiological variations when compared to control. The GC–MS profile of purified fractions showed a single peak. Further, FT-IR and NMR analyses confirmed the propensity of the purified compound as trans asarone (phenylpropanoid; C12H16O3. LC50 and LC90 values of purified asasone-treated larvae were 2.35 ppm and 12.58 ppm, respectively, for A. aegypti and 2.15 ppm and 11.58 ppm, respectively, for C. quinquefasciatus. Treatment of different sub-lethal doses of asarone to mosquito larvae at various time intervals showed disruption of intestinal layers. By showing negligible toxicity to non-target organism, purified asarone has a great potential in vector management.  相似文献   

8.
Chilli thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) is a major, economically important, and recent invasive pest of strawberries and other horticultural crops in United States. Several conventional insecticides are used for S. dorsalis management, and resistance development threatens loss of few available tools. Hence, our objectives were to: (1) determine the susceptibility of S. dorsalis to commonly used conventional insecticides: spinetoram, acetamiprid, cyantraniliprole and bifenthrin, and (2) establish LC50 and LC90 dosages for spinetoram against S. dorsalis. Sampling of S. dorsalis populations was conducted twice in seven strawberry fields in Florida during the strawberry field season between 2019 and 2020. Leaf-disc bioassays were performed with field collected populations along with a susceptible 2-year-old laboratory culture of S. dorsalis. Overall, at highest recommended rate the percent mortality of late season S. dorsalis populations from five out of seven collection sites was lower (~41%) than average mortality observed with early season populations (~72%). Populations from at least four out of seven sampling sites exhibited significantly lower mortality than the laboratory susceptible culture in late season. The LC50 and LC90 values for spinetoram for the susceptible laboratory population were 0.026 and 8.64 ppm, respectively. On the other hand, LC50 values of field collected populations to spinetoram varied with resistance ratios ranging from 6 to 269 fold as compared against the laboratory strain. Our results suggest that susceptibility of S. dorsalis to commonly used insecticides in strawberries varies significantly between early and late season populations within the same crop season. The efficacy of bifenthrin against S. dorsalis was particularly low (~ reduced to half in late season), especially among field collected populations. Our results indicate an urgent need to incorporate other pest management strategies, as well as effective rotation programs to reduce selection for resistance among populations of S. dorsalis in strawberry production.  相似文献   

9.
We investigated the susceptibility of the smaller tea tortrix, Adoxophyes honmai Yasuda, to diamide insecticides in the Shimada-Yui tea fields in Shizuoka Prefecture, Japan, from 2006 to 2011. By 2011, the insects had developed significant resistance even to concentrations far above the registration concentrations of two diamides, flubendiamide and chlorantraniliprole. The lethal concentration 50 (LC50) values of flubendiamide showed a rapid annual increase from 16.2 ppm in 2007 to 161 ppm in August 2011, exceeding the registration concentration of 100 ppm in 2010 and 2011. The LC50 values of chlorantraniliprole increased sharply from 25.3 ppm in 2010 to 98.8 ppm in August 2011, exceeding the registration concentration of 50 ppm. The LC50 values for flubendiamide and chlorantraniliprole at 10 days after treatment in insects collected in August 2011 were 105-fold and 77.2-fold higher, respectively, than those in a susceptible strain.  相似文献   

10.
Culex pipiens mosquitoes are the most widely distributed primary vector of the West Nile virus worldwide. Many attempts for investigation of botanical pesticides to avoid the development of pesticide resistance to conventional synthetic pesticides that are recognized as a threat to the diversity of ecosystems. The study aimed to determine the components of three essential oils of Lamiaceae family, lavender (Lavandula angustifolia), peppermint (Mentha piperita L.), and rosemary (Rosmarinus officinalis L.) by gas chromatography-mass spectrometry (GC–MS) analysis. Furthermore, aimed to validate the insecticidal activities of these oils as larvicidal agents against the third instar larvae of Culex pipiens using five different concentrations (62.5, 125, 250, 500, and 1000 ppm) for each oil in five replicates and as an adulticidal agent against approximately three-day-old female adults of Cx. Pipiens using 0.5, 1, 2, 4, and 5% concentrations in three replicates. The results generally showed a dose-related response. At 1000 ppm, rosemary oil showed the highest larvicidal (100%) (LC50, 214.97 ppm), followed by peppermint oil (92.00% mortality and LC50 (269.35 ppm). Lavender oil showed the lowest efficacy with 87.20% mortality and LC50 (301.11 ppm). At 5% oil concentration, the highest knockdown rate at 1 h was recorded for lavender oil (95.55%), followed by peppermint oil (88.89%) and lastly rosemary oil (84.44%). After 24 h, rosemary oil showed the lowest adult mortality rate (88.89%; LC50, 1.44%), while lavender and peppermint oils both showed a 100% mortality rate, with (LC50, 0.81% and 0.91%, respectively). The chemical constituents of the oils consisted of monoterpenes and sesquiterpenes that determined their insecticidal activities against the target insect stage. The study proposed that rosemary essential oil may be useful for the control of Cx. pipiens larvae as part of an integrated water treatment strategy, and lavender and peppermint oils may be used in an integrated plan for adult’s control.  相似文献   

11.
A preliminary study was conducted to investigate the effects of the extracts of 112 medicinal plant species, collected from the southern part of Thailand, on Aedes aegypti. Studies on larvicidal properties of plant extracts against the fourth instar larvae revealed that extracts of 14 species showed evidence of larvicidal activity. Eight out of the 14 plant species showed 100% mosquito larvae mortality. The LC50 values were less than 100μg/mL (4.1μg/ mL-89.4μg/mL). Six plant species were comparatively more effective against the fourth instar larvae at very low concentrations. These extracts demonstrated no or very low toxicity to guppy fish (Poecilia reticulata), which was selected to represent most common non-target organism found in habitats ofAe. aegypti, at concentrations active to mosquito larvae. Three medicinal plants with promising larvicidal activity, having LC50 and LC50 values being 4.1 and 16.4 μg/mL for Mammea siamensis, 20.2 and 34.7 μg/mL forAnethum graveolens and 67.4 and 110.3μg/mL forAnnona muricata, respectively, were used to study the impact of the extracts on the life cycle ofAe. aegypti. These plants affected pupal and adult mortality and also affected the reproductive potential of surviving adults by reducing the number of eggs laid and the percentage of egg hatchability. When each larval stage was treated with successive extracts at the LC50 value, the first instar larvae were found to be very susceptible to A. muricata and the second instar larvae were found to be susceptible to A. graveolens, while the third and fourth instar larvae were found to be susceptible to M. siamensis. These extracts delayed larval development and inhibited adult emergence and had no adverse effects on P. reticulata at LC50 and LC50 values, except for the M. siamensis extract at its LC50 value.  相似文献   

12.
Considering the invasion to food commodities by insects and harmful effect of chemical pesticides, essential oils are among the best known substances tested against stored product pests. These compounds may act as fumigants, contact insecticides, repellents or anti-feedants. In present study, fumigant toxicity of essential oils from Laurus nobilis L. and Myrtus communis L. was assessed on larvae and adults of Tribolium castaneum Herbst at 27?±?2?°C, 60?±?5% RH in darkness. Each essential oil was tested in five concentrations with three replicates. The LC50 values of L. nobilis and M. communis against adults of beetle were calculated 243.78 and 56.11?μl/l and LC95 values for them were 685.85 and 144.01?μl/l, respectively. For the larvae of T. castaneum, the LC50 values for L. nobilis and M. communis were 211.64 and 69.63 and LC95 values were 656.84 and 183.65?μl/l, respectively. Results showed that these essential oils may have potential as botanical control agents against larvae and adults of T. castaneum.  相似文献   

13.
The spider mite, Tetranychus urticae Koch is a serious pest of economically important plants in closed and open area worldwide. The spider mite resistance to acaricide plays a major role in the failure of the chemical control method. Thus, the aim of the current study was to evaluate the efficacy of two acaricides, abamectin and propargite, against two populations (strains) of the spider mite. Results showed that LC50s of the abamectin against susceptible and resistant strains of the spider mite were 0.1 and 2730?ppm, respectively. Whilst LC50s of the propargite against susceptible and resistant strains of the spider mite were 55 and 7199?ppm, respectively. Resistance ratio (RR) calculated as the ratio of resistance LC50/susceptible LC50 showed that RR for abamectin and propargite was 20285 and 130, respectively. The enzyme assay results showed that three mechanisms of MFO, GST and EST are involved in the abamectin resistance of the spider mite. In gel assays, when α-naphthyl acetate was used as substrate, three bands appeared in the gel in which bands E2 and E3 were major bands and E1 was a minor band confirming that α-naphthyl acetate was a better substrate for general esterase activity in the spider mite whereas β-acetate when used for esterase activity, only two faint bands (E1 and E2) were observed. The order of their involvement in the abamectin resistance is EST?>?MFO?>?GST.  相似文献   

14.
It has been argued that resistant cultivars may enhance the susceptibility of insect pests to insecticides, and thus can reduce crop production costs by lowering the rate of insecticide application. Here we studied the susceptibility of the cowpea seed beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae), reared on either a susceptible or resistant cultivar of the mung bean (Vigna radiate ), to a herbal extract taken from the prickly parsnip, Echinophora platyloba (Umbelliferae). After selection of a susceptible (Parto) and a resistant (Sahar) cultivar, the median lethal concentration (LC50) of the herbal extract was determined as 24.41 and 20.28 μL/250 mL air against beetles reared on susceptible and resistant cultivars, respectively. Rearing on resistant cultivar had a significant effect on biological parameters of C. maculatus regardless of insecticide application. However, herbal extract showed a significant interaction with host resistance in terms of oviposition rate and pre‐adult development time. These results provide evidence that the resistant cultivar increases the susceptibility of C. maculatus to herbal extract. The use of plant resistance in combination with narrow‐spectrum insecticides seems to be of both economic and environmental importance, as it can reduce the costs of crop production and lower the doses of insecticides required for satisfactory pest control.  相似文献   

15.
Thirty‐five codling moth (CM, Cydia pomonella L., Lepidoptera, Tortricidae) populations collected in different commercial orchards in six European countries were tested for their susceptibility to Cydia pomonella granulovirus (CpGV‐M). Including previously published data on CpGV‐M resistance, a total of 38 CM colonies showed considerably elevated LC50 values, independent of the country origin. When only few test individuals are available, determination of mortality of neonate larvae at a discriminating concentration range of 104 to 106 OB/ml (>log4) as a direct measure of percentage susceptible individuals in a CM population is more advisable than calculation of LC50 values. The >log4 mortality alone or in combination with the LC50 value can be used for identification of resistance in a population. Results indicated a locally separated but widely spread occurrence of CM populations with low susceptibility to CpGV‐M. The most plausible hypothesis for the emergence of CpGV‐M resistance is its selection by repeated use of CpGV products.  相似文献   

16.
Rose sawfly, Arge ochropus (Gmelin), is one of the most important pests of ornamental plants such as roses and wild rose bushes in Northern Iran. We investigated the interactions between the insecticides imidacloprid and the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae as control agents of fifth-instar larvae in the laboratory. The larvae were very susceptible to S. carpocapsae (LC50: 21 infective juvenile per larva) and H. bacteriophora (LC50: 32). Combinations of two imidacloprid rates (LC30 and LC50) and four rates of each nematode species (LC25–LC75) were tested. Combinations with the lower imidacloprid rate except for that with the highest H. bacteriophora rate caused higher mortality than both respective single-agent treatments. In combination with the higher imidacloprid rate, only one combination with H. bacteriophora and two combinations with S. carpocapsae caused higher mortality than both respective single-agent treatments. Interactions were generally stronger at the lower imidacloprid rate and were stronger for S. carpocapsae (synergistic in seven combinations, additive in one) than for H. bacteriophora (synergistic in two, additive in six). Synergistic imidacloprid-S. carpocapsae combinations could be a useful tool for the control of A. ochropus larvae that would simultaneously control other common pests susceptible to imidacloprid.  相似文献   

17.
Control of Anopheles albimanus, the main vector of malaria on the coast of the State of Chiapas, is based mainly on application of chemical insecticides, which has resulted in resistance to most registered insecticides. Strategies for biological control may provide sustainable alternatives. We report on the lethal effects of a native isolate of Gliocladium virens on An. albimanus larvae and adults, compared to that of strains of Beauveria bassiana and Metarhizium anisopliae. Conidial suspensions of G. virens, B. bassiana and M. anisopliae cultured on Sabouraud agar were tested in bioassays with An. albimanus larvae and adults. Mosquito larvae were more susceptible to all fungi, compared to adults. On early and late instar larvae, M. anisopliae showed the most pathogenic effect (LC50 of 1.4×105 conidia/mL in early instars; 1.1×105 conidia/mL in late instars), followed by G. virens (LC50 of 3.3×105 conidia/mL in early instars and 3.5×106 conidia/mL in late instars). Metarhizium anisopliae sensu lato and the native G. virens could be considered good choices for An. albimanus control in southern Mexico.  相似文献   

18.
1 Laboratory studies demonstrated that the susceptibility of larvae of the lepidopteran crucifer pest Plutella xylostella to the insect pathogen Bacillus thuringiensis (Bt) was influenced by the host plant. 2 Larvae reared on the resistant cabbage cultivars Minicole F1 and Red Drumhead were significantly more susceptible to Bt (the LC50 fell to one half) than larvae fed leaves of susceptible cultivars. 3 However, a third resistant cultivar, Aquarius F1, had no synergistic effect on Bt‐related mortality. 4 Actual uptake of Bt was monitored in the bioassays, as a preliminary experiment showed that the plant resistance reduced consumption of Bt‐treated leaf discs. However, differences in feeding rate did not explain the observed differences in mortality.  相似文献   

19.
Boric acid (BA) is widely used in various industrial process and can be accessed to nontarget organisms. This study aimed to investigate the insecticidal effects of BA and its toxic activities with respect to immunologic and genotoxic effects using Galleria mellonella larvae as a model. BA concentrations (78.125–10,000 ppm) were administrated to the larvae using the feeding method. Concentration‐dependent mortality was observed in all larval groups. Probit analysis revealed LC30, LC50, and LC70 values to be 112.4, 320.1, and 911.4 ppm, respectively. These concentrations were used in all bioassays. Drastic reductions in total hemocyte counts along with changes in differential hemocyte counts were observed following BA treatment. Cell viability assays showed dose‐dependent reductions in viable cells and an increase in the necrotic and apoptotic ratios after BA treatment. However, mitotic indices of larval hemocytes did not change at all BA concentrations. The cytotoxic effect of BA led to a significant reduction in cellular immune responses such as encapsulation, melanization, and nodulation activities of treated larvae. While BA increased micronucleus ratios at the highest concentration, comet parameters indicating DNA damage increased in G. mellonella larval hemocytes at all concentrations. These report that BA suppresses the immune system of G. mellonella and also poses risks of genotoxicity at high concentrations.  相似文献   

20.
Cereals are staple food for many countries and are grown on millions of hectares of land, but much of the harvest is wasted due to losses by pests. To minimize these losses, many pesticides are used which are damaging to the environment and human health. There are debates to get rid of these chemicals but they are still in use at large scale. An alternative control strategy for insect pests in storage houses is the use of botanicals. In this study, four plant essential oils, two plant extracts, two herbicides, and two insecticides were used against Tribolium confusum and the comparison of toxicity was made by calculating LC50 and LT50 values. LC50 values were higher for abamectin (2.09–10.23 mg/L) and cypermethrin (3.41–11.78 mg/L) insecticides followed by neem essential oil (7.39–19.24 mg/L) and citrus extract (10.14–24.50 mg/L). However, LC50 values were maximum in case of jaman plant extract (22.38–176.42 mg/L) followed by two herbicides, Logran (19.66–39.72 mg/L) and Topik (29.09–47.67 mg/L) However, LC50 values were higher for topic herbicide (24.098 ppm) and jaman essential oil (16.383 ppm) after four days of treatment. Abamectin and cypermethrin insecticides, neem essential oil and citrus plant extract also killed adults of T. confusum quicker as compared other essential oils, extracts and herbicides. Results revealed that botanical formulations being environmentally safe could be used instead of highly hazardous pesticides for stored products’ pests. This study also elaborates the non-host toxicity of herbicides commonly applied in our agroecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号