首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effect of salt stress on glycine betaine-binding activity has been investigated in periplasmic fractions released from Rhizobium meliloti 102F34 by cold osmotic shock. Binding activity was monitored by three techniques: equilibrium dialysis, filter procedure, and detection of 14C ligand-protein binding by direct non-denaturing polyacrylamide gel electrophoresis (PAGE) followed by autoradiography. The three methods demonstrated the existence of a strong glycine betaine-binding activity, but only in periplasmic fractions from cells grown at high osmolarity. The non-denaturing PAGE of such periplasmic shock fluids mixed with [methyl-14C]glycine betaine showed only one radioactive band, indicating the involvement of one glycine betaine-binding protein. To determine the possible implication of this binding protein in glycine betaine uptake, transport activity was measured with cells submitted to cold osmotic shock. No significant decrease of transport activity was noticed. This lack of effect could be explained by the small quantity of periplasmic proteins released as judged by the low activity of phosphodiesterase, a periplasmic marker enzyme, observed in the shock fluid. The specificity of binding was analysed with different potential competitors: other betaines such as gamma-butyrobetaine, proline betaine, pipecolate betaine, trigonelline and homarine, or amino acids like glycine and proline, did not bind to the glycine betaine-binding protein, whereas glycine betaine aldehyde and choline were weak competitors. Optimum pH for binding was around 7.0, but approx. 90% of the glycine betaine-binding activity remained at pH 6.0 or 8.0. The calculated binding affinity (KD) was 2.5 microM. Both glycine betaine-binding activity and affinity were not significantly modified whether or not the binding assays were done at high osmolarity. A 32 kDa osmotically inducible periplasmic protein, identified by SDS-PAGE, apparently corresponds to the glycine betaine-binding protein.  相似文献   

2.
Intracellular accumulation of glycine betaine has been shown to confer an enhanced level of osmotic stress tolerance in Rhizobium meliloti. In this study, we used a physiological approach to investigate the mechanism by which glycine betaine is accumulated in osmotically stressed R. meliloti. Results from growth experiments, 14C labeling of intermediates, and enzyme activity assays are presented. The results provide evidence for the pathway of biosynthesis and degradation of glycine betaine and the osmotic effects on this pathway. High osmolarity in the medium decreased the activities of the enzymes involved in the degradation of glycine betaine but not those of enzymes that lead to its biosynthesis from choline. Thus, the concentration of the osmoprotectant glycine betaine is increased in stressed cells. This report demonstrates the ability of the osmolarity of the growth medium to regulate the use of glycine betaine as a carbon and nitrogen source or as an osmoprotectant. The mechanisms of osmoregulation in R. meliloti and Escherichia coli are compared.  相似文献   

3.
N Riou  M C Poggi  D Le Rudulier 《Biochimie》1991,73(9):1187-1193
Azospirillum brasilense is able to use glycine betaine as a powerful osmoprotectant; the uptake of this compound is strongly stimulated by salt stress, but significantly reduced by cold osmotic shock. Non-denaturing PAGE in the presence of [methyl-14C] glycine betaine and autoradiography demonstrated the presence of one glycine betaine-binding protein (GBBP) in periplasmic shock fluid obtained from high-osmolarity-grown cells. The binding activity was absent in periplasmic fractions from cells grown at low osmolarity. SDS-PAGE analysis showed that the osmotically inducible GBBP has an apparent molecular weight of 32,000. The isoelectric point was between 5.9 and 6.6, as determined by isoelectric focusing. This protein bound glycine betaine with high affinity (KD of 3 microM), but had no affinity for either other betaines (proline betaine, gamma-butyrobetaine, pipecolate betaine, trigonelline, homarine) or related compounds (choline, glycine betaine aldehyde, glycine and proline). Optimum binding activity occurred at pH 7.0 to 7.5, and was not altered whether or not the binding assays were done at low or high osmolarity. Immunoprecipitation and Western blotting showed that immunoadsorbed anti-GBBP antibody from E coli cross-reacted with the GBBP produced by A brasilense cells grown at high osmolarity.  相似文献   

4.
The fate of radioactive glycine betaine was investigated in 31-day-old alfalfa ( Medicago sativa L. cv Europe) plants nodulated by Rhizobium meliloti 102 F 34. Radioactive [methyl-14C]- or [1,2-14C]glycine betaine was fed for 6 h to plants subjected or not to stress by 0.2 M NaCl. A 36% decrease in glycine betaine uptake was observed in salinized plants. No loss of radioactivity in the gas phase or the growth medium was ever observed from either stressed or unstressed plants, even after a 4-day chase period. Glycine betaine catabolism was negligible in shoots of both control and salinized plants, but it was important in roots and even more significant in nodules of unstressed plants. In unstressed nodules, 52% of the labelled betaine was metabolized after 4 days, and the half-life of glycine betaine was estimated at ca 4 days. On the contrary, catabolism was dramatically reduced in stressed roots and, particularly, nodules in which the half-life of glycine betaine increased to at least 16 days. Analysis of the redistribution of radioactivity among plant organs during the chase period shows that glycine betaine was translocated from the roots to the nodules of salinized plants, so that during this period salinization resulted in a 91% increase in nodule radioactivity, whereas a 34% decrease was observed in control plants. Altogether, reduced catabolism and increased translocation of glycine betaine to stressed nodules favored its accumulation in these organs. The high level of glycine betaine might contribute to maintain a better water status in the nodule and, thus, protect the nitrogen fixation activity against the deleterious effects of elevated osmolarity in the nutrient solution.  相似文献   

5.
A total of 15 rhizobial strains representing Rhizobium meliloti, Rhizobium japonicum, Rhizobium trifolii, Rhizobium leguminosarum, Rhizobium sp. (Sesbania rostrata) and Rhizobium sp. (Hedysarum coronarium), were studied with regard to growth rate under salt stress in defined liquid media. In the presence of inhibitory concentrations of NaCl, enhancement of growth resulting from added glycine betaine was observed for R. meliloti strains and Rhizobium sp. (Hedysarum coronarium) but not for other Rhizobium species. The concentration of glycine betaine required for maximal growth stimulation was very low (1 mM) in comparison with the osmolarity of the medium. The stimulation was shown to be independent of any specific solutes. Other related compounds like proline betaine, carnitine, choline, -butyrobetaine and pipecolate betaine were also effective compounds in restoring the growth rate of cells grown in medium of elevated osmolarity. High rate of glycine betaine uptake was demonstrated in R. meliloti cells grown in media of increased osmotic strength. The intracellular concentration of this solute was found to be 308 mM in 0.3 M NaCl-grown cells and 17 times lower in minimal medium-grown cells. Glycine betaine was used for growth under conditions of low osmolarity but could not serve as sole carbon or nitrogen source in medium of increased osmotic strength. Experiments with [14C]glycine betaine showed that this molecule was not metabolized by cells subjected to osmotic stress, whereas it was rapidly converted to dimethylglycine, sarcosine and glycine in minimal medium-grown cells.Abbreviations LAS lactate-aspartate-salts - LGS lactate-glutamate-salts - LS lactate-succinate - MSY mannitol-salts-yeast - YLS yeast-lactate-succinate  相似文献   

6.
The role of glycine betaine and choline in osmoprotection of various Rhizobium, Sinorhizobium, Mesorhizobium, Agrobacterium, and Bradyrhizobium reference strains which display a large variation in salt tolerance was investigated. When externally provided, both compounds enhanced the growth of Rhizobium tropici, Sinorhizobium meliloti, Sinorhizobium fredii, Rhizobium galegae, Agrobacterium tumefaciens, Mesorhizobium loti, and Mesorhizobium huakuii, demonstrating their utilization as osmoprotectants. However, both compounds were inefficient for the most salt-sensitive strains, such as Rhizobium leguminosarum (all biovars), Agrobacterium rhizogenes, Rhizobium etli, and Bradyrhizobium japonicum. Except for B. japonicum, all strains exhibit transport activity for glycine betaine and choline. When the medium osmolarity was raised, choline uptake activity was inhibited, whereas glycine betaine uptake was either increased in R. leguminosarum and S. meliloti or, more surprisingly, reduced in R. tropici, S. fredii, and M. loti. The transport of glycine betaine was increased by growing the cells in the presence of the substrate. With the exception of B. japonicum, all strains were able to use glycine betaine and choline as sole carbon and nitrogen sources. This catabolic function, reported for only a few soil bacteria, could increase competitiveness of rhizobial species in the rhizosphere. Choline dehydrogenase and betaine-aldehyde dehydrogenase activities were present in the cells of all strains with the exception of M. huakuii and B. japonicum. The main physiological role of glycine betaine in the family Rhizobiaceae seems to be as an energy source, while its contribution to osmoprotection is restricted to certain strains.  相似文献   

7.
Adaptation to osmotic stress alters the amounts of several specific proteins in the Escherichia coli K-12 envelope. The most striking feature of the response to elevated osmolarity was the strong induction of a periplasmic protein with an Mr of 31,000. This protein was absent in mutants with lambda plac Mu insertions in an osmotically inducible locus mapping near 58 min. The insertions are likely to be in proU, a locus encoding a transport activity for the osmoprotectants glycine betaine and proline. Factors affecting the extent of proU induction were identified by direct examination of periplasmic proteins on sodium dodecyl sulfate gels and by measuring beta-galactosidase activity from proU-lac fusions. Expression was stimulated by increasing additions of salt or sucrose to minimal medium, up to a maximum at 0.5 M NaCl. Exogenous glycine betaine acted as an osmoregulatory signal; its addition to the high-osmolarity medium substantially repressed the expression of the 31,000-dalton periplasmic protein and the proU-lac+ fusions. Elevated osmolarity also caused the appearance of a second periplasmic protein (Mr = 16,000), and severe reduction in the amounts of two others. In the outer membrane, the well-characterized repression of OmpF by high osmolarity was observed and was reversed by glycine betaine. Additional changes in membrane composition were also responsive to glycine betaine regulation.  相似文献   

8.
To further study mechanisms of coping with osmotic stress-low water activity, mutants of Staphylococcus aureus with transposon Tn917-lacZ-induced NaCl sensitivity were selected for impaired ability to grow on solid defined medium containing 2 M NaCl. Southern hybridization experiments showed that NaCl-sensitive mutants had a single copy of the transposon inserted into a DNA fragment of the same size in each mutant. These NaCl-sensitive mutants had an extremely long lag phase (60 to 70 h) in defined medium containing 2.5 M NaCl. The osmoprotectants glycine betaine and choline (which is oxidized to glycine betaine) dramatically shortened the lag phase, whereas L-proline and proline betaine, which are effective osmoprotectants for the wild type, were ineffective. Electron microscopic observations of the NaCl-sensitive mutant under NaCl stress conditions revealed large, pseudomulticellular cells similar to those observed previously in the wild type under the same conditions. Glycine betaine, but not L-proline, corrected the morphological abnormalities. Studies of the uptake of L-[14C]proline and [14C]glycine betaine upon osmotic upshock revealed that the mutant was not defective in the uptake of either osmoprotectant. Comparison of pool K+, amino acid, and glycine betaine levels under NaCl stress conditions in the mutant and the wild type revealed no striking differences. Glycine betaine appears to have additional beneficial effects on NaCl-stressed cells beyond those of other osmoprotectants. The NaCl stress protein responses of the wild type and the NaCl-sensitive mutant were characterized and compared by labeling with L-[35 S]methionine and two-dimensional gel electrophoresis. The synthesis of 10 proteins increased in the wild type in response to NaCl stress, whereas the synthesis of these 10 proteins plus 2 others increased in response to NaCl stress in the NaCl-sensitive mutant. Five proteins, three of which were NaCl stress proteins, were produced in elevated amounts in the NaCl-sensitive mutant under unstressed conditions compared to the wild type. The presence of glycine betaine during NaCl stress decreased the production of three NaCl stress proteins in the mutant versus one in the wild type.  相似文献   

9.
Bacteroids isolated from alfalfa nodules induced by Rhizobium meliloti 102F34 transported glycine betaine at a constant rate for up to 30 min. Addition of sodium salts greatly increased the uptake activity, whereas other salts or non-electrolytes had less effect. The apparent Km for glycine betaine uptake was 8.3 microM and V was about 0.84 nmol min-1 (mg protein)-1 in the presence of 200 mM-NaCl which gave maximum stimulation of the transport. Supplementing bacteroid suspensions with various energy-yielding substrates, or ATP, did not increase glycine betaine uptake rates. The uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP), and the respiratory inhibitor potassium cyanide strongly inhibited glycine betaine uptake, but arsenate was totally inactive. Glycine betaine transport showed considerable structural specificity: choline, proline betaine, gamma-butyrobetaine and trigonelline did not competitively inhibit the system, although choline and proline betaine were transported by bacteroids. Both a high-affinity activity and a low-affinity activity were found for choline uptake. These osmoprotective compounds might have a significant role in the maintenance of nitrogenase activity in bacteroids subjected to salt stress.  相似文献   

10.
Rhizobium meliloti is known to use betaines synthesized by its host, Medicago sativa, as osmoprotectants and sources of energy. It is shown in the present report that the symbiotic megaplasmid (pSym) of R. meliloti RCR2011 encodes functions essential to the catabolism of three betaines, trigonelline (nicotinic acid N-methylbetaine), stachydrine (proline betaine or dimethylproline), and carnitine (gamma-trimethyl-beta-hydroxybutyrobetaine). Preliminary evidence is presented showing that functions on pSym also influence the catabolism of choline and its oxidative product, glycine betaine. Genes implicated in betaine catabolism are found in the symbiotic region of pSym. Trigonelline catabolism functions lie between two clusters of symbiotic genes, nifKDH and nok/fixVI'. Stachydrine and carnitine functions lie to the right of trigonelline catabolism functions, immediately to the right of fixVI'. Information necessary to choline and glycine betaine catabolism is probably encoded to the right of stachydrine catabolism functions.  相似文献   

11.
12.
The symbiotic soil bacterium Sinorhizobium meliloti uses the compatible solutes glycine betaine and proline betaine for both protection against osmotic stress and, at low osmolarities, as an energy source. A PCR strategy based on conserved domains in components of the glycine betaine uptake systems from Escherichia coli (ProU) and Bacillus subtilis (OpuA and OpuC) allowed us to identify a highly homologous ATP-binding cassette (ABC) binding protein-dependent transporter in S. meliloti. This system was encoded by three genes (hutXWV) of an operon which also contained a fourth gene (hutH2) encoding a putative histidase, which is an enzyme involved in the first step of histidine catabolism. Site-directed mutagenesis of the gene encoding the periplasmic binding protein (hutX) and of the gene encoding the cytoplasmic ATPase (hutV) was done to study the substrate specificity of this transporter and its contribution in betaine uptake. These mutants showed a 50% reduction in high-affinity uptake of histidine, proline, and proline betaine and about a 30% reduction in low-affinity glycine betaine transport. When histidine was used as a nitrogen source, a 30% inhibition of growth was observed in hut mutants (hutX and hutH2). Expression analysis of the hut operon determined using a hutX-lacZ fusion revealed induction by histidine, but not by salt stress, suggesting this uptake system has a catabolic role rather than being involved in osmoprotection. To our knowledge, Hut is the first characterized histidine ABC transporter also involved in proline and betaine uptake.  相似文献   

13.
The osmoprotectant glycine betaine is synthesized via the path-way choline -> betaine aldehyde -> glycine betaine. In spinach (Spinacia oleracea), the first step is catalyzed by choline monooxygenase (CMO), and the second is catalyzed by betaine aldehyde dehydrogenase. Because betaine aldehyde is unstable and not easily detected, we developed a coupled radiometric assay for CMO. [14C]Choline is used as substrate; NAD+ and betaine aldehyde dehydrogenase prepared from Escherichia coli are added to oxidize [14C]betaine aldehyde to [14C]glycine betaine, which is isolated by ion exchange. The assay was used in the purification of CMO from leaves of salinized spinach. The 10-step procedure included polyethylene glycol precipitation, polyethyleneimine precipitation, hydrophobic interaction, anion exchange on choline-Sepharose, dimethyldiethanolamine-Sepharose, and Mono Q, hydroxyapatite, gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following gel filtration, overall purification was about 600-fold and recovery of activity was 0.5%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a polypeptide with a molecular mass of 45 kD. Taken with the value of 98 kD estimated for native CMO (R. Brouquisse, P. Weigel, D. Rhodes, C.F. Yocum, A.D. Hanson [1989] Plant Physiol 90: 322-329), this indicates that CMO is a homodimer. CMO preparations were red-brown, showed absorption maxima at 329 and 459 nm, and lost color upon dithionite addition, suggesting that CMO is an iron-sulfur protein.  相似文献   

14.
Hybridization to a PCR product derived from conserved betaine choline carnitine transporter (BCCT) sequences led to the identification of a 3.4-kb Sinorhizobium meliloti DNA segment encoding a protein (BetS) that displays significant sequence identities to the choline transporter BetT of Escherichia coli (34%) and to the glycine betaine transporter OpuD of Bacillus subtilis (30%). Although the BetS protein shows a common structure with BCCT systems, it possesses an unusually long hydrophilic C-terminal extension (169 amino acids). After heterologous expression of betS in E. coli mutant strain MKH13, which lacks choline, glycine betaine, and proline transport systems, both glycine betaine and proline betaine uptake were restored, but only in cells grown at high osmolarity or subjected to a sudden osmotic upshock. Competition experiments demonstrated that choline, ectoine, carnitine, and proline were not effective competitors for BetS-mediated betaine transport. Kinetic analysis revealed that BetS has a high affinity for betaines, with K(m)s of 16 +/- 2 microM and 56 +/- 6 microM for glycine betaine and proline betaine, respectively, in cells grown in minimal medium with 0.3 M NaCl. BetS activity appears to be Na(+) driven. In an S. meliloti betS mutant, glycine betaine and proline betaine uptake was reduced by about 60%, suggesting that BetS represents a major component of the overall betaine uptake activities in response to salt stress. beta-Galactosidase activities of a betS-lacZ strain grown in various conditions showed that betS is constitutively expressed. Osmotic upshock experiments performed with wild-type and betS mutant cells, treated or not with chloramphenicol, indicated that BetS-mediated betaine uptake is the consequence of immediate activation of existing proteins by high osmolarity, most likely through posttranslational activation. Growth experiments underscored the crucial role of BetS as an emerging system involved in the rapid acquisition of betaines by S. meliloti subjected to osmotic upshock.  相似文献   

15.
Like other chenopods, sugarbeets (Beta vulgaris L. cv Great Western D-2) accumulate glycine betaine when salinized; this may be an adaptive response to stress. The pathway of betaine synthesis in leaves of salinized (150-200 millimolar NaCl) sugarbeet plants was investigated by supplying [14C]formate, phosphoryl[14C]monomethylethanolamine ([14C][unk] MME) or phosphoryl[14C]choline ([14C][unk] choline) to leaf discs and following 14C incorporation into prospective intermediates. The 14C kinetic data were used to develop a computer model of the betaine pathway.

When [14C]formate was fed, [unk] MME, phosphoryldimethylethanolamine ([unk] DME) and [unk] choline were the most prominent methylated products at short labeling times, after which 14C appeared in free choline and in betaine. Phosphatidylcholine labeled more slowly than [unk] choline, choline, and betaine, and behaved as a minor end product. Very little 14C entered the free methylethanolamines. When [14C][unk] MME was supplied, a small amount was hydrolyzed to the free base but the major fate was conversion to [unk] DME, [unk] choline, free choline, and betaine; label also accumulated slowly in phosphatidylcholine. Label from supplied [14C][unk] choline entered choline and betaine rapidly, while phosphatidylcholine labeled only slowly and to a small extent.

These results are consistent with the pathway [unk] MME →[unk] DME → [unk] choline → choline → → betaine, with a minor side branch leading from [unk] choline into phosphatidylcholine. This contrasts markedly (a) with the pathway of stress-induced choline and betaine synthesis in barley, in which phosphatidylcholine apparently acts as an intermediate (Hitz, Rhodes, Hanson 1981, Plant Physiol 68: 814-822); (b) with choline biogenesis in mammalian liver and microorganisms. Computer modeling of the experimental data pointed strongly to regulation at the [unk] choline → choline step, and also indicated that the rate of [unk] choline synthesis is subject to feedback inhibition by [unk] choline.

  相似文献   

16.
Cyclic beta-(1,2)-glucans are synthesized by members of the Rhizobiaceae family through protein-linked oligosaccharides as intermediates. The protein moiety is a large inner membrane molecule of about 319 kDa. In Agrobacterium tumefaciens and in Rhizobium meliloti the protein is termed ChvB and NdvB, respectively. Inner membranes of R. meliloti 102F34 and A. tumefaciens A348 were first incubated with UDP-[14C]Glc and then solubilized with Triton X-100 and analyzed by polyacrylamide gel electrophoresis under native conditions. A radioactive band corresponding to the 319-kDa protein was detected in both bacteria. Triton-solubilized inner membranes of A. tumefaciens were submitted to native electrophoresis and then assayed for oligosaccharide-protein intermediate formation in situ by incubating the gel with UDP-[14C]Glc. A [14C]glucose-labeled protein with an electrophoretic mobility identical to that corresponding to the 319-kDa [14C]glucan protein intermediate was detected. In addition, protein-linked radioactivity was partially chased when the gel was incubated with unlabeled UDP-Glc. A heterogeneous family of cyclic beta-(1,2)-glucans was formed upon incubation of the gel portion containing the 319-kDa protein intermediate with UDP-[14C]Glc. A protein with an electrophoretic behavior similar to the 319-kDa protein intermediate was "in gel" labeled by using Triton-solubilized inner membranes of an A. tumefaciens exoC mutant, which contains a protein intermediate without nascent glucan. These results indicate that initiation (protein glucosylation), elongation, and cyclization were catalyzed in situ. Therefore, the three enzymatic activities detected in situ reside in a unique protein component (i.e., cyclic beta-(1,2)-glucan synthase). It is suggested that the protein component is the 319-kDa protein intermediate, which might catalyze the overall cyclic beta-(1,2)-glucan synthesis.  相似文献   

17.
We have developed a simple and rapid method for detecting the enzyme myristoyl-CoA:protein N-myristoyl transferase. The enzyme catalyzes the transfer of the myristoyl moiety of myristoyl-CoA to the amino-terminal glycine residue of a peptide (protein). Incorporation of the [14C]myristate into the peptide is quantified after separation of the [14C]myristoyl-peptide from unreacted [14C]myristoyl-CoA by selective adsorption of [14C]myristoyl-CoA on acidic alumina. Optimal assay concentrations were 200 microM synthetic peptide, 1 microM [14C]myristoyl-CoA, 10 mM Tris-HCl/1 mM dithiothreitol/0.1 mM ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid/aprotinin (10 micrograms/ml) buffer, pH 7.4, and 1-10 micrograms protein.  相似文献   

18.
The ndvB locus of Rhizobium meliloti was sequenced and found to encode a 319-kDa protein involved in the production of beta-(1----2)-glucan. Transposon Tn5 mutagenesis revealed that a large portion of the downstream half of this gene is not essential for symbiosis but is required for optimal production of beta-(1----2)-glucan. A high molecular weight inner membrane protein, believed to be the ndvB gene product, was absent from two different upstream ndvB::Tn5 mutants. This protein could be labeled in vitro with UDP-[U-14C]glucose in the wild type but not in the symbiotically defective mutants. Inner membrane preparations from the symbiotically competent downstream mutants labeled less well than did those from wild type with UDP-[U-14C] glucose and did not show distinct bands after polyacrylamide gel electrophoresis and fluorography, suggesting that C-terminal truncations of NdvB might affect the stability of this molecule. These downstream mutants had reduced amounts of periplasmic beta-(1----2)-glucan and exhibited several vegetative defects seen also in the upstream mutants. These included alterations in phage and antibiotic sensitivity, in motility, and in growth in low osmolarity media. Bacteroids produced by two of the downstream mutants were morphologically abnormal, indicating that ndvB is involved not only in invasion but also in bacteroid development.  相似文献   

19.
Effects of monensin on posttranslational processing of myelin proteins   总被引:13,自引:11,他引:2  
Rat brain slices were incubated with [3H]palmitic acid and [14C]glycine to label the lipid and protein moieties, respectively, of myelin proteolipid protein (PLP). The effects of monensin on posttranslational processing of proteins were examined by measuring the appearance of [14C]glycine- and [3H]palmitate-labeled proteins in myelin and myelin-like fractions. At 0.01 and 0.10 microM, monensin did not appreciably affect total lipid or protein synthesis; higher concentrations caused increased inhibition. Monensin at 0.10 microM markedly decreased the appearance of [14C]glycine-labeled PLP in myelin, but had little effect on the 14C basic proteins or the incorporation of [3H]palmitic acid into total or myelin PLP. The same relative effect was apparent at higher monensin concentrations. In the myelin-like fraction, monensin at 0.10 microM also depressed entry of [14C]glycine into protein comigrating with PLP, and again had no effect on incorporation of [3H]palmitic acid. In addition, monensin increased the [3H]palmitate label associated with two high-molecular-weight proteins in the myelin-like fraction with no concomitant increase in [14C]glycine label.  相似文献   

20.
J Boch  B Kempf    E Bremer 《Journal of bacteriology》1994,176(17):5364-5371
Exogenously provided glycine betaine functions as an efficient osmoprotectant for Bacillus subtilis in high-osmolarity environments. This gram-positive soil organism is not able to increase the intracellular level of glycine betaine through de novo synthesis in defined medium (A. M. Whatmore, J. A. Chudek, and R. H. Reed, J. Gen. Microbiol. 136:2527-2535, 1990). We found, however, that B. subtilis can synthesize glycine betaine when its biosynthetic precursor, choline, is present in the growth medium. Uptake studies with radiolabelled [methyl-14C]choline demonstrated that choline transport is osmotically controlled and is mediated by a high-affinity uptake system. Choline transport of cells grown in low- and high-osmolarity media showed Michaelis-Menten kinetics with Km values of 3 and 5 microM and maximum rates of transport (Vmax) of 10 and 36 nmol min-1 mg of protein-1, respectively. The choline transporter exhibited considerable substrate specificity, and the results of competition experiments suggest that the fully methylated quaternary ammonium group is a key feature for substrate recognition. Thin-layer chromatography revealed that the radioactivity from exogenously provided [methyl-14C]choline accumulated intracellularly as [methyl-14C]glycine betaine, demonstrating that B. subtilis possesses enzymes for the oxidative conversion of choline into glycine betaine. Exogenously provided choline significantly increased the growth rate of B. subtilis in high-osmolarity media and permitted its proliferation under conditions that are otherwise strongly inhibitory for its growth. Choline and glycine betaine were not used as sole sources of carbon or nitrogen, consistent with their functional role in the process of adaptation of B. subtilis to high-osmolarity stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号