首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The localization and retention of dis and trisazo dyes in connective tissues and bone was studied in rats and rabbits. Chlorazol fast pink, 5% in 0.9% NaCl. was injected intraperitoneally, 25 mg/kg each day for 2 days in newborn, growing, mature and 17-18 day pregnant rats, and up to 5 days in young rabbits. The dye was also injected at different time intervals during the development of strontium-induced rickets in growing rats, and in animals with abscess walls following subcutaneous injection of 0.1 ml turpentine. Animals were killed at-intervals thereafter, and comparison of in vivo staining of 5% solutions of chlorazol fast pink, chlorantine fast red, chlorazol black E, chlorazol sky blue, chlorazol sky pink, chlorazol green, chlorazol violet, pontamine green and pontamine sky blue was made by intraperitoneal injection in rats. Soft and hard tissue specimens were embedded in polyester resin or in paraffin wax and sectioned at 5-7 μ. Chlorazol fast pink stained some connective tissues and growing bones. The main intensity of staining occurred within 24 hr and gradually decreased but was still detectable after 6 mo in elastic tissues. In thin plastic sections, colouration was brilliant, not in osteoid tissue, but at calcifying bone margins and in elastic fibres. Dye localized at calcifying bone margins was incorporated within calcified tissues and then subsequently lost through remodelling. Such staining was not seen in paraffin-embedded material. Dye uptake was greatly reduced in rachitic rats, and wide osteoid seams were coloured faint pink, but where calcification was still occurring, colouration was brilliant. Similarly collagenous tissue in abscess walls was only lightly stained, in contrast to brilliant colouration of elastic tissues and macrophages. Of the 9 dyes tested, only chlorazol fast pink and chlorazol sky blue stained bone and elastic tissue in vivo. This prolonged retention and staining by these 2 dyes, unlike the others, was associated with their presence in the proximal convoluted tubules of the kidney.  相似文献   

2.
L Kass 《Stain technology》1987,62(2):77-84
Using the xanthene dye C.I. acid red 52 (C.I. 45100) as a single agent stain applied to coverslip preparations of blood and bone marrow, primary and secondary granules in cells of neutrophilic origin stained brilliant pink. In eosinophils, granules stained dark red. In leukemic myeloblasts that also stained with Sudan black B and demonstrated myeloperoxidase and specific esterase activity, a few bright red staining granules were visualized with acid red 52. In some leukemic promyelocytes, Auer rods stained bright red. In leukemic lymphoblasts, no red granules were seen. Of a wide variety of dyes tested so far, acid red 52 is the most sensitive stain for primary and secondary granules of granulocytes in blood and bone marrow.  相似文献   

3.
Luxol fast blue ARN (Du Pont, C.I. solvent blue 37) is a diarylguanidine salt of a sulfonated azo dye. This dye was compared with other Luxol blue and Luxol black dyes. Luxol fast blue ARN has improved staining qualities for phospholipids and myelin, and can advantageously be substituted for Luxol fast blue MBS (MBSN). Appropriate staining times for a 0.1% dye solution in 95% ethanol (containing 0.02% acetic add) at 35°-40° C range from 2-3 hr. After staining, the sections should be rinsed in 95% ethanol, rinsed in distilled water, and differentiated for 2 sec in 0.005% Li2CO3, rinsed in 70% ethanol, washed in water, and counterstained as required. Phospholipids and myelin selectively stain deep blue. A fixative containing CaCl2, 1%; cetyltrimethylammonium bromide, 0.5%; and formaldehyde, 10%, in water gave excellent results with brain. However, 10% formalin can be used. The staining of the phospholipids is probably due to the formation of dye-phospholipid complexes.  相似文献   

4.
Using the xanthene dye C.I. acid red 52 (CI. 45100) as a single agent stain applied to coverslip preparations of blood and bone marrow, primary and secondary granules in cells of neutrophilic origin stained brilliant pink. In eosinophils, granules stained dark red. In leukemic myeloblasts that also stained with Sudan black B and demonstrated myeloperoxidase and specific esterase activity, a few bright red staining granules were visualized with acid red 52- In some leukemic promyelocytes, Auer rods stained bright red. In leukemic lymphoblasts, no red granules were seen. Of a wide variety of dyes tested so far, acid red 52 is the most sensitive stain for primary and secondary granules of granulocytes in blood and bone marrow.  相似文献   

5.
Aqueous solutions of the arylmethane dyes Chromoxane pure blue BLD (C.I. No. 43825) and Chromoxane pure blue B (C.I. No. 43830) will stain beryllium oxide. In the presence of EDTA the staining of other metals is masked. As a specific stain for BeO, formol saline fixed paraffin sections are hydrated and stained for 1 hr with either 0.1 gm of pure blue BLD in 100 ml of pH 4.0 Na-acetate buffer or with 0.1 gm of pure blue B in 1 N NaOH adjusted to pH 9.0 with HCl. To mask interference from other metal ions, 9 gm of Na2-EDTA is added to 100 ml of the stain solution. BeO is stained blue, organic tissue components are either unstained or pink. Results of tests against other materials show that a high degree of specificity may be expected from these dyes. A 1% aqueous solution of neutral red may be used as a counterstain.  相似文献   

6.
Many batches of pyronin B (C.I. 45010), pyronin Y or G (C.I. 45005), and acridine red (C.I. 45000) produce positive Feulgen or PAS reactions when their 0.25% solutions are saturated with SO2 and used on acid-hydrolyzed or periodate-oxidized tissue sections. These dyes behave as Schiff-type reagents and stain aldehyde-containing structures orange, brown, pink, red, or violet, depending on the particular batch used. The most frequent contaminants are violet and are nonfluorescent. Aldehyde groups are stained by these dyeSO2 solutions as is shown by using unhydrolyzed controls in the Feulgen reaction and unoxidized controls in the PAS reaction, and by dye solutions lacking SO2. Other procedures included reactions with aldehyde-blocking reagents, treatment with deoxyribonuclease and diastase, and extraction of nudeic acids with trichloroaeetic acid. The standard Schiff reagent was used in the Same procedures as a basis for comparing results. Since the Schiff-aldehyde reaction requires a dye with a primary amine group and since true pronins contain only secondary or tertiary amines, the positive histochemical results are evidently caused by dye contaminants possessing primary amine groups. The PAS reaction is more sensitive than the Feulgen reaction in detecting dye contaminants. Tissues used were chiefly formalin-fixed mouse intestine and ascites cells. Seventy-five commercial pyronins were studied from 21 different firms. Among 19 batches of pyronin B, 14 were found to contain primary amine dye contaminants. Among 39 batches of pyronin Y(G), 19 contained similar primary amine dye contaminants. Of the 8 batches of acridine red tested, 7 were found to contain primary amine dye contaminants. Nine commercial mixtures of methyl green-pyronin were studied and 4 were found to be likewise contaminated, but these reactive dye contaminants in them are apparently not associated with methyl green. A tabulated summary of the pyronin batches containing primary amine contaminants, and a list of sources and distributors of pyronin dyes are included.  相似文献   

7.
The properties of amido black 10B (C.I. 20470), Coomassie blue R (C.I. 42660), and fast green FCF (C.I. 42053) as protein stains, along with a few comments on Coomassie blue G (C.I. 42655), are presented and dye impurities and their effects on protein-dye binding within gels are discussed. All three dyes produced metachromatic effects with some proteins. Problems encountered with long-term stability and fixation of certain maize seed proteins are reported along with procedures for overcoming them. The low solubility of Coomassie blue R in trichloroacetic acid prevented maximum staining and destaining within a reasonable time, whereas other solvents allowed diffusion of some proteins during staining. Coomassie blue R binds to proteins in much higher amounts than do amido black and fast green, which accounts for its sensitivity in detection of protein bands in gels. Procedures for obtaining maximum contrast with photographs are also outlined.  相似文献   

8.
Demonstration of keratin in Zenker-fixed skin and in tissues stored in formalin can be difficult because such material is unsuitable for histochemical studies. A reactive dye, Levafix red violet E-2BL, proved useful for demonstration of keratohyalin and some types of keratin. Formalin-, Zenker- and methacarn-fixed sections were pretreated with alkaline alcohol, stained one hour at 60 C in an aqueous solution containing 0.25% Levafix red violet E-2BL plus 0.25% NaCl, rinsed in buffer solution pH 9, dehydrated and mounted. Keratohyalin granules and stratum corneum were colored red violet; hair and tonofibrils remained unstained. In sections prestained with Mayer's acid hemalum, keratohyalin was dark blue. Sulfonated monoazo dyes without reactive groups colored no tissue structures under the conditions of this technic; apparently, Levafix red violet E-2BL is bound via its reactive group. Polarization microscopic studies suggest binding of Levafix red violet E-2BL by an amorphous matrix of keratin. Correlations with chemical data indicate that the staining patterns parallel the distribution of proteins formed in the stratum granulosum.  相似文献   

9.
A 1% solution of chlorazol fast pink B in 0.9% NaCl can be used like trypan blue to detect virus inclusions and proteinaceous entities in peelings from leaves or thin sections taken from living plant tissue. Like trypan blue, a solution of the pink dye causes somatic nuclei to swell and thus facilitates observation of their structure. The two dyes combine into a beautiful differential bicolored stain. Mix 5 ml of 0.5% trypan blue stock solution with 35 ml of 1% chlorazol pink B in 0.9% NaCl. Stain fresh tissue 1-2 minutes. The combination stain is superior to either dye alone for differentiating virus entities.  相似文献   

10.
Demonstration of keratin in Zenker-fired skin and in tissues stored in formalin can be difficult because such material is unsuitable for histochemical studies. A reactive dye, Levafix red violet E-PBL, proved useful for demonstration of keratohyalin and some types of keratin. Formalin-, Zenker- and methacarn-fired sections were pretreated with alkaline alcohol, stained one hour at 60 C in an aqueous solution containing 0.25% Levafix red violet E-2BL plus 0.25% NaC1, rinsed in buffer solution pH 9, dehydrated and mounted. Keratohyalin granules and stratum corneum were colored red violet; hair and tonofibrils remained unstained. In sections prestained with Mayer's acid hemalum, keratohyalin was dark blue. Sulfonated monoazo dyes without reactive groups colored no tissue structures under the conditions of this technic; apparently, Levafix red violet E-2BL is bound via its reactive group. Polarization microscopic studies suggest binding of Levafix red violet E-2BL by an amorphous matrix of keratin. Correlations with chemical data indicate that the staining patterns parallel the distribution of proteins formed in the stratum granulosum.  相似文献   

11.
Some staining properties of 10 anionic disazo dyes are clarified by comparison with previous chromatographic analysis. Trypan blue contains both blue and red components and the purified blue fraction displays no color shifts in tissue sections. Evans blue, Niagara blue 2B, Niagara sky blue, Niagara sky blue 4B and Niagara sky blue 6B generally resemble trypan blue. Congo red is a metachromatic dye and the only known example among anionic dyes of established purity whose color shows shifts in tissue sections and also in solutions with certain basic compounds. Other red dyes (Congo corinth, trypan red and vital red) are not metachromatic. The red dye impurity of trypan blue selectively stains nuclei which are pycnotic, degenerating or undergoing no further division. This reaction is apparently related to basic protein content. Other reactions of the red fraction of trypan blue (mammalian erythrocytes, blood plasma) are not fully explained on this basis.  相似文献   

12.
Various acid dyes prove satisfactory for the routine staining of bacteria. Those used are acid fuchsin, anilin blue w. s., fast acid blue R, fast green FCF, light green, orseilline BB, erythrosin, phloxine and rose bengal. Acid fuchsin, fast green, anilin blue, and orseilline are especially recommended. Phenolic solutions of the dyes, acidified with acetic acid, with the addition of ferric chloride to those containing acid fuchsin, anilin blue, fast green or light green, are used. Procedures are given in detail for staining or demonstrating vegetative cells, resting and germinating spores, capsules, sheaths and glycogen in bacteria; germinating and conjugating spores of yeast; and for counterstaining after acid fast or Gram staining. The principal advantages of using acid dyes are better differentiation, and less tendency for slime amd debris to take the dye.  相似文献   

13.
Fourteen textile dyes were evaluated as histological stains for benign and malignant tissues. An acid dye, Milling red SWB (Acid Red 114, C.I. 23635) was found to possess great affinity for epithelial intercellular bridges. The intercellular bridges were demonstrated clearly when the Milling red SWB was used as a 1% solution in 1% potassium alum after hematoxylin and, also, when methylene blue ZX (Basic Blue 9, C.I. 52015) was used as a counter-stain, without hematoxylin. The intercellular bridges could not be demonstrated in pleomorphic cells which invaded the subepithelial connective tissue.  相似文献   

14.
L Kass 《Stain technology》1990,65(5):211-230
Traditionally, blood and bone marrow cells have been identified based on their characteristic shapes and colors when stained with one of several panoptic stains including Wright's or Giemsa's. As questions arose regarding the origin of normal and leukemic cells, cytochemical stains were developed. These stains help identify cells on the basis of a distinctive metabolite or enzyme. As part of an ongoing tradition in which textile dyes are used for biological staining, several new stains have been applied to hematologic staining. These include C.I. basic blue 41, basic blue 141, basic blue 93, and an asymmetrical polymethine dye. As additional cell-selective stains are developed, we can anticipate further improvements in our ability to identify normal and malignant hematopoietic cells.  相似文献   

15.
An investigation has been made of the staining properties of eight dyes of the thionin group. The dyes studied are as follows: tetra-ethyl thionin, asymmetrical di-ethyl thionin, tetra-methyl thionin (methylene blue), tri-methyl thionin (azure B), asymmetrical di-methyl thionin (azure A), symmetrical di-methyl thionin, mono-methyl thionin (azure C), and unsubstituted thionin. The staining properties were tested on sections of paraffin embedded material following five different methods of fixation. No counterstain was employed. It was shown that there was a general correlation between the extent of ethylation or methylation of the dyes and their staining properties. As one passes from tetra-ethyl thionin down the series to thionin itself, there is a progressive decrease in the amount of green showing in the preparations, and an increase in the amount of red present, also an increase in the metachromatic effects, and in the intensity of nuclear staining. There seems, also, to be a similar relation between staining qualities on the one hand and the color and solubility of the dye base on the other.  相似文献   

16.
New Stains for Blood and Bone Marrow Cells   总被引:2,自引:0,他引:2  
Traditionally, blood and bone marrow cells have been identified based on their characteristic shapes and colors when stained with one of several panoptic stains including Wright's or Giemsa's. As questions arose regarding the origin of normal and leukemic cells, cytochemical stains were developed. These stains help identify cells on the basis of a distinctive metabolite or enzyme. As part of an ongoing tradition in which textile dyes are used for biological staining, several new stains have been applied to hematologic staining. These include C.I. basic blue 41, basic blue 141, basic blue 93, and an assymetrical polymethine dye. As additional cell-selective stains are developed, we can anticipate further improvements in our ability to identify normal and malignant hematopoietic cells.  相似文献   

17.
An investigation has been made of the staining properties of eight dyes of the thionin group. The dyes studied are as follows: tetra-ethyl thionin, asymmetrical di-ethyl thionin, tetra-methyl thionin (methylene blue), tri-methyl thionin (azure B), asymmetrical di-methyl thionin (azure A), symmetrical di-methyl thionin, mono-methyl thionin (azure C), and unsubstituted thionin. The staining properties were tested on sections of paraffin embedded material following five different methods of fixation. No counterstain was employed. It was shown that there was a general correlation between the extent of ethylation or methylation of the dyes and their staining properties. As one passes from tetra-ethyl thionin down the series to thionin itself, there is a progressive decrease in the amount of green showing in the preparations, and an increase in the amount of red present, also an increase in the metachromatic effects, and in the intensity of nuclear staining. There seems, also, to be a similar relation between staining qualities on the one hand and the color and solubility of the dye base on the other.  相似文献   

18.
Using Allium cepa chromosomes after 5-bromo, 2'-deoxyuridine (BrdU) incorporation, we studied several acid and basic dyes and fluorochromes for their potential as substitutes for 33258 Hoechst in the fluorescence-plus-Giemsa (FPG) technique. All of the dyes and fluorochromes investigated showed a photosensitizing capacity which was slightly lower than 33258 Hoechst in the cases of daunomycin, phloxin, fluorescein, thioflavine T and nuclear fast red, and somewhat higher in the case of eosin Y. Observation and cytophotometric analysis of differentially Giemsa-stained sister chromatids when eosin Y was used as the photosensitizing agent revealed the unsubstituted chromatid to be reddish violet in colour (absorption maximum, 550 nm), while the BrdU-substituted chromatid was blue or pale violet blue (absorption maximum, 580 nm). These results indicate that eosin Y is a useful photosensitizing dye which could be used as a substitute for 33258 Hoechst in the FPG staining technique.  相似文献   

19.
The live/dead fluorescent assay provides a quick method for assessing the proportion of live and dead cells in cell culture systems or tissues and is widely used. Dead cells are detected by the fluorescence produced when propidium iodide (PI) binds to DNA; PI and similar molecules are excluded from live cells but can penetrate dead cells because of their loss of membrane integrity. Here we investigated the effect of serum in the culture medium on the reliability of the method. We assessed viability of chondrocytes with/without serum using both a live/dead assay kit and also trypan blue staining. We found that after 2 days of culture, the DNA-binding dye PI could no longer detect dead cells if serum was present but they were readily detected in serum-free medium or if an inhibitor to DNase I was added to the serum-containing medium. Dead cells could be detected by trypan blue staining in all cultures. Hence dead cells are no longer detected as the DNase I present in serum degrades their DNA. DNA-binding dyes may thus not give a reliable estimate of the number of dead cells in systems that have been cultured in the presence of serum for several days.  相似文献   

20.
The present investigation was carried out with the intention of using in vivo injections of chlorazol fast pink to mark the beginnings of bone formation in experimental skeletal fluorosis. Experiments show, however, that any uncalcified osteoid stains red, irrespective of whether it has been recently laid down or not. The staining is acid fast and hard tissues can be decalcified without loss of the dye. In vivo staining of the matrix by chlorazol fast pink does not appear to affect the growth of the tissue or its subsequent calcification and, therefore, provides a means of labelling bone surfaces at any stage during a continued experiment. Chlorazol fast pink is readily released from bone matrix by the β toxin of Clostridium histolyticum but not by other proteinases, which suggests that the dye is attached to collagen. The matrix of dentine differs from that of bone in that it is attacked both by the β toxin and the γ toxin of Clostridium histolyticum. No explanation of this difference between bone and dentine can be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号