首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
A family of variants of the PRM promoter of lambda phage was constructed, bearing nine base pair substitutions in a stretch of the spacer DNA separating the contacted -10 and -35 regions. The substituted sequences were chosen for their potential to adopt structures different from those of average B-form DNA and thus to affect the interaction of RNA polymerase with the two contacted regions. Characterization of the promoters in vitro and in vivo provides additional support for the lack of specific contacts in the substituted spacer region and shows that a small change in the relative rotational orientation of the -10 and -35 regions is inconsequential to promoter function. However, a 2-3-fold reduction in promoter activity is observed with promoters bearing substitutions of nonalternating dG-dC base pairs in either orientation. This corroborates other studies indicating the anomalous behavior of such sequences and suggests that the structure of the spacer DNA can modulate promoter recognition.  相似文献   

3.
4.
The technique of DNAase I footprinting has been used to investigate preferred binding sites for actinomycin D and distamycin on a 160-base-pair DNA fragment from E. coli containing the tyr T promoter sequence. Only sites containing the dinucleotide step GpC are protected by binding of actinomycin, and all such sites are protected. Distamycin recognizes four major regions rich in A + T residues. Both antibiotics induce enhanced rates of cleavage at certain regions flanking their binding sites. These effects are not restricted to any particular base sequence since they are produced in runs of A and T by actinomycin and in GC-rich sequences by distamycin. The observed increases in susceptibility to nuclease attack are attributed to DNA structural variations induced in the vicinity of the ligand binding site, most probably involving changes in the width of the helical minor groove.  相似文献   

5.
Interaction of netropsin, distamycin A and a number of bis-netropsins with DNA fragments of definite nucleotide sequence was studied by footprinting technique. The nuclease protection experiments were made at fixed DNA concentration and varying ligand concentrations. The affinity of ligand for a DNA site was estimated from measurements of ligand concentration that causes 50% protection of the DNA site. Distribution pattern of the protected and unprotected regions along the DNA fragment was compared with the theoretically expected arrangement of the ligand along the same DNA. The comparison led us to the following conclusions: 1. Footprinting experiments show that at high levels of binding the arrangement of netropsin molecules along the DNA corresponds closely to the distribution pattern expected from theoretical calculations based on the known geometry of netropsin--DNA complex. However, the observed differences in the affinity of netropsin for various DNA sequences is markedly greater than that expected from theoretical calculations. 2. Netropsin exhibits a greater selectivity of binding than that expected for a ligand with three specific reaction centers associated with the antibiotic amide groups. It binds preferentially to DNA regions containing four or more successive AT pairs. Among 13 putative binding sites for netropsin with four or more successive AT pairs there are 11 strong binding sites and two weaker sites which are occupied at 2 D/P less than or equal to 1/9 and 2 D/P = 1/4, respectively. 3. The extent of specificity manifested by distamycin A is comparable to that shown by netropsin although the molecule of distamycin A contains four rather than three amide groups. At high levels of binding distamycin A occupies the same binding sites on DNA as netropsin does. 4. The binding specificity of bis-netropsins is greater than that of netropsin. Bis-netropsins can bind to DNA in such a way that the two netropsin-like fragments are implicated in specific interaction with DNA base pairs. However, the apparent affinity of bis-netropsins estimated from footprinting experiments is comparable with that of netropsin for the same DNA region. 5. At high levels of binding bis-netropsins and distamycin A (but not netropsin) can occupy any potential site on DNA irrespectively of the DNA sequence. 6. Complex formation with netropsin increases sensitivity to DNase I at certain DNA sites along with the protection effect observed at neighboring sites.  相似文献   

6.
Interaction of distamycin A with calf spleen DNA is investigated by the method of hyperchromic spectra. Hyperchromic spectra of complexes are partitioned into the components corresponding to the denaturation A-T and G+C base pairs and dissociation of the ligand, fractions of respective components are found as a function of temperature. A scheme of melting of successive regions of DNA -with different G+C content together with the scheme of distamycin A redistribution in the course of thermal denaturation is presented.  相似文献   

7.
The interaction of distamycin with ColE1 DNA was examined by using differential scanning calorimetry (DSC) taking the helix-coil transition theory of DNA into consideration. Our results here strongly indicate that the affinity of distamycin to DNA, at a low distamycin concentration, depends highly on the DNA sequence, and preferential binding occurs to the sites of four to six successive A-T pairs having two or more successive G-C pairs on both their ends.  相似文献   

8.
9.
The specific interaction of distamycin A and analogs with DNA's and synthetic deoxypolynucleotide duplexes were studied in detail by means of circular dichroism and the data were analyzed together with viscosity results of several natural DNA's. At low ligand to nucleotide ratio the previously reported specific binding to (A-T) pairs of DNA is verified by a highly favoured interaction with (A-T)-enriched segments of distamycins containing four and five methylpyrrole carboxamide units. At higher distamycin concentration a second specific binding to (G-C) pairs most probably through hydrogen bonding is established. Viscometric results suggest a distamycin-induced local bending of the helix and could support the idea of a preferential alignment of the ligand molecule along only one strand in the groove which differs from the netropsin interaction mechanism. The possibility of an overlapping binding of the oligopeptides in the small groove is discussed.  相似文献   

10.
The rates of cleavage of DNAs containing substituents at position 5 of thymine or cytosine have been measured for a variety of sequence-specific endonucleases, so as to determine which features in the DNA sequence are being probed. Phage phi e DNA fully substituted with 5-hydroxymethyluracil is cleaved more slowly by enzymes whose recognition sequences contain A-T base pairs than are DNAs containing thymine, but both types of DNA are cleaved at similar rates by enzymes recognizing sequences composed only of G-C base pairs. Phage PBS2 DNA with uracil completely substituted for thymine is cleaved slowly by several enzymes which recognize sequences containing A-T base pairs (endonucleases Hpa I, HindII, and HindIII), while the rates of cleavage by other enzymes (endonucleases EcoRI and BamHI) are not affected. Phage lambda- and P22 DNAs containing 5-bromouracil are cleaved more slowly by several enzymes (endonucleases HindIII, Hpa I, BamHI) than are thymine-containing DNAs. Enzymes that recognize sequence isomers with the composition G:C:2A:2T (endonucleases EcoRI, Hpa I, HindIII) are not equally affected by substitution at position 5 of thymine, suggesting that they differ in their contacts with A-T base pairs. DNA containing glucosylated 5-hydroxymethylcytosine in place of cytosine is resistant to cleavage by all the endonucleases examined.  相似文献   

11.
12.
13.
14.
To evaluate the length and sequence dependence of the unusual interaction properties observed for nonalternating A/T sequences in deoxyribonucleic acid (DNA) [Wilson, W. D., Wang, Y. H., Krishnamoorthy, C. R., & Smith, J. C. (1985) Biochemistry 24, 3991-3999], we have synthesized the oligomers d(A-T)6, dA10 X dT10, and d(A6-T6) and evaluated their interaction with the intercalator propidium. Propidium visible spectral shifts on adding all three oligomers are quite similar. Low-temperature spectrophotometric binding measurements indicate that d(A-T)6 has a significantly larger binding constant for propidium than dA10.dT10, as with the analogous alternating and nonalternating DNA polymers. The oligomer dA10.dT10 displays positive cooperativity in its propidium binding isotherm, and its binding constant increases with increasing temperature while d(A-T)6 does not display positive cooperativity, and its binding constant decreases with temperature, again as with the analogous polymers. van't Hoff plots indicate that the propidium binding enthalpies are approximately -9 and +6 kcal/mol for the alternating and nonalternating DNA samples, respectively. The mixed-sequence self-complementary oligomer d(A6-T6) has an unusual low-temperature binding isotherm which suggests a single strong binding site and a larger number of weaker binding sites which bind propidium cooperatively. A van't Hoff plot indicates that the cooperative sites d(A-T)6 have binding constants and binding enthalpies similar to dA10.dT10. Similar rate constants are observed in the sodium dodecyl sulfate driven dissociation reaction of propidium from d(A-T)6 and d(A6-T6), but the association reaction of propidium is significantly slower with d(A6-T6) than with d(A-T)6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
P Rockwell  J S Krakow 《Biochemistry》1988,27(9):3512-3520
The effects of an inhibitory monoclonal antibody (mAb) raised against the beta subunit of the Escherichia coli RNA polymerase were determined on the kinetics and structural interactions during formation of the open promoter complex (RPo). Analysis of the kinetics of abortive initiation on linear and supercoiled templates of the lac and TAC16 promoters showed that abortive synthesis by mAb 210E8-RNA polymerase varied as a function of DNA topology. A kinetic analysis of RPl formation on the supercoiled lac UV5 promoter showed that mAb 210E8 effected a slight alteration in the isomerization rate and no effect on the initial rate of RNA polymerase binding to the promoter. The potent inhibition of initiation with linear promoters by mAb 210E8 was not apparent when the promoters were assayed in their supercoiled forms. Abortive synthesis with the TAC16 promoter was accompanied by an mAb 210E8 induced hindrance of ApUpU but not UpGpU synthesis. The data indicate that the inhibition by mAb 210E8 with the supercoiled TAC16 promoter is further alleviated when the spacer length is shifted from 16 base pairs (ApUpU formation) to 18 base pairs (UpGpU formation). When DNase I and dimethyl sulfate were used to probe DNA structure, mAb 210E8 was found to alter polymerase interactions with the lac promoter. DNase I footprinting indicated that the structural interactions for lac P+ promoter-RNA polymerase complexes were slightly altered in the presence of mAb 210E8. Treatment of the RNA polymerase-lac UV5 complex with dimethyl sulfate revealed an alternate mode of RNA polymerase interaction with essential guanine contacts which was intermediate between a fully protected and free promoter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The electrophoretic mobilities and thermal melting properties of self complementary A-T containing dodecamer oligodeoxyribonucleotides have been investigated as a function of solution conditions. The oligomers contained tracts of nonalternating A-T base pairs of 2 (d(A2T2)3), 3 (d(A3T3)2), and 6 (d(A6T6] as well as the fully alternating (d(A-T)6) sequence. The melting temperature increased with the length of the nonalternating sequence and was approximately 12 degrees C higher in the d(A6T6) sequence than in the alternating oligomer. Under denaturing conditions all oligomers had the same electrophoretic mobility on acrylamide gels. Under conditions which favor duplex formation, the oligomers exhibited significant sequence dependent mobility differences. The mobilities of two oligomers, d(A-T)6 and d(A6-T6), were approximately equal and were less than those of the other oligonucleotides. The greatest mobility was observed for d(A2T2)3. These results are best explained by a model which requires bending at a junction of two or more continuous A or T bases with another sequence.  相似文献   

17.
The interactions of DAPI with natural DNA and synthetic polymers have been investigated by hydrodynamic, DNase I footprinting, spectroscopic, binding, and kinetic methods. Footprinting results at low ratios (compound to base pair) are similar for DAPI and distamycin. At high ratios, however, GC regions are blocked from enzyme cleavage by DAPI but not by distamycin. Both poly[d(G-C)]2 and poly[d(A-T)]2 induce hypochromism and shifts of the DAPI absorption band to longer wavelengths, but the effects are larger with the GC polymer. NMR shifts of DAPI protons in the presence of excess AT and GC polymers are significantly different, upfield for GC and mixed small shifts for AT. The dissociation rate constants and effects of salt concentration on the rate constants are also quite different for the AT and the GC polymer complexes. The DAPI dissociation rate constant is larger with the GC polymer but is less sensitive to changes in salt concentration than with the AT complex. Binding of DAPI to the GC polymer and to poly[d(A-C)].poly[d(G-T)] exhibits slight negative cooperativity, characteristic of a neighbor-exclusion binding mode. DAPI binding to the AT polymer is unusually strong and exhibits significant positive cooperativity. DAPI has very different effects on the bleomycin-catalyzed cleavage of the AT and GC polymers, a strong inhibition with the AT polymer but enhanced cleavage with the GC polymer. All of these results are consistent with two totally different DNA binding modes for DAPI in regions containing consecutive AT base pairs versus regions containing GC or mixed GC and AT base pair sequences. The binding mode at AT sites has characteristics which are similar to those of the distamycin-AT complex, and all results are consistent with a cooperative, very strong minor groove binding mode. In GC and mixed-sequence regions the results are very similar to those observed with classical intercalators such as ethidium and indicate that DAPI intercalates in DNA sequences which do not contain at least three consecutive AT base pairs.  相似文献   

18.
The available evidence suggests that during the process of formation of a functional or "open" complex at a promoter, Escherichia coli RNA polymerase transiently realigns the two contacted regions of the promoter, thus stressing the intervening spacer DNA. We tested the possibility that this process plays an active role in the formation of an open complex. Two series of promoters were examined: one with spacer DNAs of 15 to 19 base-pairs and a derivative for which the promoters additionally contained a one-base gap in the spacer, so as to relieve any stress imposed on the DNA. Consistent with an active role for the stressed DNA in driving open complex formation, we have found that for promoters with a 17-base-pair spacer, the presence of a gap leads to a delay in the formation of an open complex, at a step subsequent to the initial binding of RNA polymerase to the promoter. The results with the other gapped promoters rule out direct binding of RNA polymerase to the region of the gap and indicate an increased flexibility in the gapped DNA. As not all observations with the spacer length series of gapped and ungapped promoters can be interpreted in terms of an active role of the spacer DNA without additional assumptions, such a role must still be considered tentative.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号