首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex allocation theory predicts that mothers should adjust their sex-specific reproductive investment in relation to the predicted fitness returns from sons versus daughters. Sex allocation theory has proved to be successful in some invertebrate taxa but data on vertebrates often fail to show the predicted shift in sex ratio or sex-specific resource investment. This is likely to be partly explained by simplistic assumptions of vertebrate life-history and mechanistic constraints, but also because the fundamental assumption of sex-specific fitness return on investment is rarely supported by empirical data. In short-lived species, the time of hatching or parturition can have a strong impact on the age and size at maturity. Thus, if selection favors adult sexual-size dimorphism, females can maximize their fitness by adjusting offspring sex over the reproductive season. We show that in mallee dragons, Ctenophorus fordi, date of hatching is positively related to female reproductive output but has little, if any, effect on male reproductive success, suggesting selection for a seasonal shift in offspring sex ratio. We used a combination of field and laboratory data collected over two years to test if female dragons adjust their sex allocation over the season to ensure an adaptive match between time of hatching and offspring sex. Contrary to our predictions, we found no effect of laying date on sex ratio, nor did we find any evidence for within-female between-clutch sex-ratio adjustment. Furthermore, there was no differential resource investment into male and female offspring within or between clutches and sex ratios did not correlate with female condition or any partner traits. Consequently, despite evidence for selection for a seasonal sex-ratio shift, female mallee dragons do not seem to exercise any control over sex determination. The results are discussed in relation to potential constraints on sex-ratio adjustment, alternative selection pressures, and the evolution of temperature-dependent sex determination.  相似文献   

2.
Despite decades of research, whether vertebrates can and do adaptively adjust the sex ratio of their offspring is still highly debated. However, this may have resulted from the failure of empirical tests to identify large and predictable fitness returns to females from strategic adjustment. Here, we test the effect of diet quality and maternal condition on facultative sex ratio adjustment in the color polymorphic Gouldian finch (Erythrura gouldiae), a species that exhibits extreme maternal allocation in response to severe and predictable (genetically-determined) fitness costs. On high-quality diets, females produced a relatively equal sex ratio, but over-produced sons in poor dietary conditions. Despite the lack of sexual size dimorphism, nutritionally stressed foster sons were healthier, grew faster, and were more likely to survive than daughters. Although these findings are in line with predictions from sex allocation theory, the extent of adjustment is considerably lower than previously reported for this species. Females therefore have strong facultative control over sex allocation, but the extent of adjustment is likely determined by the relative magnitude of fitness gains and the ability to reliably predict sex-specific benefits from environmental (vs. genetic) variables. These findings may help explain the often inconsistent, weak, or inconclusive empirical evidence for adaptive sex ratio adjustment in vertebrates.  相似文献   

3.
Sex allocation theory predicts that females should bias their reproductive investment towards the sex generating the greatest fitness returns. The fitness of male offspring is often more dependent upon maternal investment, and therefore, high‐quality mothers should invest in sons. However, the local resource competition hypothesis postulates that when offspring quality is determined by maternal quality or when nest site and maternal quality are related, high‐quality females should invest in the philopatric sex. Waterfowl – showing male‐biased size dimorphism but female‐biased philopatry – are ideal for differentiating between these alternatives. We utilized molecular sexing methods and high‐resolution maternity tests to study the occurrence and fitness consequences of facultative sex allocation in Barrow's goldeneyes (Bucephala islandica). We determined how female structural size, body condition, nest‐site safety and timing of reproduction affected sex allocation and offspring survival. We found that the overall sex ratio was unbiased, but in line with the local resource competition hypothesis, larger females produced female‐biased broods and their broods survived better than those of smaller females. This bias occurred despite male offspring being larger and tending to have lower post‐hatching survival. The species shows strong female breeding territoriality, so the benefit of inheriting maternal quality by philopatric daughters may exceed the potential mating benefit for sons of high‐quality females.  相似文献   

4.
Parents should bias resource allocation towards the sex most likely to provide higher fitness returns by adjusting the birth sex ratio and/or through differential care of sons and daughters. Sex allocation research in mammals to date has been focused almost exclusively on maternal traits, but fathers may also play an important role. Future studies should investigate the influence of paternal quality on the fitness of sons and daughters, and possible conflicts of interest between mothers and fathers. There is also a crucial need for more studies examining whether relative levels of maternal care in sons and daughters depend on paternal quality.  相似文献   

5.
Sex allocation theory predicts that females should adjust the sex of their offspring when the fitness returns of one sex are higher than the other. However, biased sex ratios may also arise if mortality differs between the sexes. Here, we examine whether offspring sex ratio bias in the dung beetle, Onthophagus taurus, represents adaptive sex allocation by females or is due to sex-specific mortality. First, we re-analyze an existing data set to show that females produce an excess of daughters when mating to smaller, less attractive males and near equal sex ratio with large, more attractive males. We show, that this results from females adjusting larval provisions after mating to males of variable attractiveness which in turn influences the likelihood that sons die during development. Second, we conduct a manipulative experiment varying the quantity and quality of larval provisions and show that the mortality of sons increased when larval provisions were reduced. Collectively, our work demonstrates that offspring mortality is contingent on the amount of resources provisioned by females and that sons have greater nutritional demands than daughters during development, leading to higher mortality. Our results therefore demonstrate the importance of considering sex-specific offspring mortality in studies of sex ratio evolution.  相似文献   

6.
When fitness returns are sex-specific, selection should favor the facultative adjustment of offspring sex ratios. Seasonal shifts in offspring sex ratios are predicted to be particularly beneficial in short-lived, sexually dimorphic species in which hatching date is linked to adult size, which is related to fitness in a sex-specific fashion. We used four time series of hatching dates and progeny sex ratios in the brown anole (Anolis sagrei), a short-lived lizard with male-biased sexual size dimorphism, to test for such a seasonal shift in progeny sex ratio. In 2 of the 4 years, we also released hatchlings to their natural environment to test for sex-specific effects of hatching date on juvenile survival and adult size. We found that the relationship between hatching date and size the following year was significantly steeper in males than in females, and previous work has shown that adult size is more strongly tied to fitness in males than in females. Based on those results and on further evidence linking hatching date and body size to sex-specific survival and reproductive success, we predicted that sex ratios should shift from male- to female-biased as the breeding season progressed. Contrary to our prediction, we detected no clear seasonal shift in progeny sex ratio. Furthermore, although juvenile survival was correlated with hatching date, this relationship did not consistently differ between the sexes. The observation that progeny sex ratios are seasonally invariant despite several apparent links to adult fitness suggests that the evolution of a seasonal sex-ratio bias is either inherently constrained or requires a stronger selective advantage with respect to juvenile survival.  相似文献   

7.
Trivers and Willard (1973) predicted that stressed adult female mammals may enhance their fitness by skewing offspring sex ratios and maternal investment to favor daughters. The present study investigated whether stressing young hamsters might also influence sex ratio and growth of subsequent offspring. Control females received food ad libitum (A) on Days 1-50 postpartum (AA). Experimental females were food-restricted (R) either on Days 1-25 (RA), Days 26-50 (AR), or Days 1-50 (RR) postpartum. Subjects were mated when 91-95 days old. Litter sizes and survivorship (= % litters within a treatment that contained at least one pup), sex ratio (= % males), and pup weights in the next generation were recorded every fifth day from parturition until Day 25 postpartum. Control litters contained significantly more offspring at birth than did RR litters. Sex ratio was significantly higher at birth for AA litters than for the other treatments. Postpartum sex ratio within each group remained similar to that recorded at birth. RR litters contained significantly fewer pups compared to the other three treatments from Days 5-25. RR female pups weighed significantly more at birth than their counterparts in the other treatments. Weights of males at birth were similar in all treatments. By Day 25, both male and female RR pups weighed significantly less than control, AR, and RA pups. Food restriction early in life may have long-term consequences on sex ratio and pup growth in golden hamsters.  相似文献   

8.
1. Maternal carotenoids in the egg yolk have been hypothesized to promote maturation of the immune system and protect against free radical damages. Depending on availability, mothers may thus influence offspring quality by depositing variable amounts of carotenoids into the eggs. Sex allocation theory predicts that in good quality environments, females should invest into offspring of the sex that will provide larger fitness return, generally males. 2. In a field experiment we tested whether female great tits bias their investment towards males when carotenoid availability is increased, and whether male offspring of carotenoid-supplemented mothers show higher body condition. We partially cross-fostered hatchlings to disentangle maternal effects from post-hatching effects, and manipulated hen flea Ceratophyllus gallinae infestation to investigate the relationship between carotenoid availability and resistance to ectoparasites. 3. As predicted, we found that carotenoid-supplemented mothers produced males that were heavier than their sisters at hatching, while the reverse was true for control mothers. This suggests that carotenoid availability during egg production affects male and female hatchlings differentially, possibly via a differential allocation to male and female eggs. 4. A main effect of maternal supplementation became visible 14 days after hatching when nestlings hatched from eggs laid by carotenoid-supplemented mothers had gained significantly more mass than control nestlings. Independently of the carotenoid treatment, fleas impaired mass gain of nestlings during the first 9 days in large broods only and reduced tarsus length of male nestlings at an age of 14 days, suggesting a cost to mount a defence against parasites. 5. Overall, our results suggest that pre-laying availability of carotenoids affects nestling condition in a sex-specific way with potentially longer-lasting effects on offspring fitness.  相似文献   

9.
When costs of producing male versus female offspring differ, parents may vary allocation of resources between sons and daughters. We tested leading sex-allocation theories using an information-theoretic approach and Bayesian hierarchical models to analyse litter sex ratios (proportion males) at weaning for 1,049 litters over 24 years from a population of Richardson’s ground squirrels (Urocitellus richardsonii), a polygynandrous, annually reproducing mammal in which litter size averages from six to seven offspring and sons are significantly heavier than daughters at birth and weaning. The model representing random Mendelian sex-chromosome assortment fit the data best; a homeostatic model received similar support but other models performed poorly. Embryo resorption was rare, and 5 years of litter data in a second population revealed no differences in litter size or litter sex ratio between birth and weaning, suggesting that litter size and sex ratio are determined in early pregnancy. Sex ratio did not vary with litter size at weaning in any of 29 years, and the observed distribution of sex ratios did not differ significantly from the binomial distribution for any litter size. For 1,580 weaned litters in the two populations, average sex ratio deviated from parity in only 3 of 29 years. Heavier females made a greater reproductive investment than lighter females, weaning larger and heavier litters composed of smaller sons and daughters, but litter sex ratio was positively related to maternal mass in only 2 of 29 years. Such occasional significant patterns emphasize the importance of multi-season studies in distinguishing infrequent events from normal patterns.  相似文献   

10.
1. Sex allocation theory predicts that where dispersal is sex biased, the fitness consequences of producing male or female offspring are mediated by resource availability and maternal competitive ability. Females in poorer condition are expected to favour dispersing offspring to minimize resource competition with kin. Environmental heterogeneity may drive spatial variation in sex allocation through resource competition-related benefits to females and territory quality benefits to dispersing or philopatric offspring. 2. Here, we demonstrate that microhabitat heterogeneity can drive extremely fine-scale spatial heterogeneity in offspring sex allocation. Female bobucks (Trichosurus cunninghami) in temperate rainforest were more likely to produce male offspring than those in surrounding Eucalyptus forest. 3. A maternal physiological effect was identified, in that females of lower body mass were more likely to produce male offspring. This finding is consistent with resource competition predictions, in that smaller females are expected to have poorer competitive ability. 4. Genetic spatial autocorrelation analysis identified males as the more dispersing sex. Furthermore, overproduction of males by mothers in the rainforest habitat was geographically concordant with reduced philopatry, as inferred from spatial genetic analysis. This provides empirical validation of dispersal-related explanations of offspring sex allocation: that production of offspring of the dispersing sex minimizes the potential for resource competition with kin. 5. Spatial variation in dispersal via sex allocation responses to environmental heterogeneity can potentially contribute to spatial patterns in population dynamics.  相似文献   

11.
Sex allocation theory predicts that a female should produce the offspring of the sex that most increases her own fitness. For polygynous species, this means that females in superior condition should bias offspring production toward the sex with greater variation in lifetime reproductive success, which is typically males. Captive mammal populations are generally kept in good nutritional condition with low levels of stress, and thus populations of polygynous species might be expected to have birth sex ratios biased toward males. Sex allocation theory also predicts that when competition reduces reproductive success of the mother, she should bias offspring toward whichever sex disperses. These predicted biases would have a large impact on captive breeding programs because unbalanced sex ratios may compromise use of limited space in zoos. We examined 66 species of mammals from three taxonomic orders (primates, ungulates, and carnivores) maintained in North American zoos for evidence of birth sex ratio bias. Contrary to our expectations, we found no evidence of bias toward male births in polygynous populations. We did find evidence that birth sex ratios of primates are male biased and that, within primates, offspring sex was biased toward the naturally dispersing sex. We also found that most species experienced long contiguous periods of at least 7 years with either male‐ or female‐biased sex ratios, owing in part to patterns of dispersal (for primates) and/or to stochastic causes. Population managers must be ready to compensate for significant biases in birth sex ratio based on dispersal and stochasticity. Zoo Biol 19:11–25, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

12.
Sex allocation theory has proved to be one the most successful theories in evolutionary ecology. However, its role in more applied aspects of ecology has been limited. Here we show how sex allocation theory helps uncover an otherwise hidden cost of neonicotinoid exposure in the parasitoid wasp Nasonia vitripennis. Female N. vitripennis allocate the sex of their offspring in line with Local Mate Competition (LMC) theory. Neonicotinoids are an economically important class of insecticides, but their deployment remains controversial, with evidence linking them to the decline of beneficial species. We demonstrate for the first time to our knowledge, that neonicotinoids disrupt the crucial reproductive behaviour of facultative sex allocation at sub-lethal, field-relevant doses in N. vitripennis. The quantitative predictions we can make from LMC theory show that females exposed to neonicotinoids are less able to allocate sex optimally and that this failure imposes a significant fitness cost. Our work highlights that understanding the ecological consequences of neonicotinoid deployment requires not just measures of mortality or even fecundity reduction among non-target species, but also measures that capture broader fitness costs, in this case offspring sex allocation. Our work also highlights new avenues for exploring how females obtain information when allocating sex under LMC.  相似文献   

13.
Sex allocation theory predicts that reproducing individuals will increase their fitness by facultatively adjusting their relative investment towards the rarer sex in response to population shifts in operational sex ratio (OSR). The evolution of facultative manipulation of sex ratio depends on the ability of the parents to track the conditions favouring skewed sex allocation and on the mechanism controlling sex allocation. In animals, which have well-developed sensorial mechanisms, facultative adjustment of sex ratios has been demonstrated on many occasions. In this paper, we show that plants have mechanisms that allow them to evaluate the population OSR. We simulated three different conditions of population OSR by manipulating the amount of pollen received by the female flowers of a monoecious herb, and examined the effect of this treatment on the allocation to male vs. female flowers. A shortage of pollen on the stigmas resulted in a more male-skewed sex allocation, whereas plants that experienced a relatively pollen rich environment tended to produce a more female-skewed sex allocation pattern. Our results for Begonia gracilis demonstrate that the individuals of this species are able to respond to the levels of pollination intensity experienced by their female flowers and adjust their patterns of sex allocation in accordance to the expectations of sex allocation theory.  相似文献   

14.
Sex allocation theory predicts that facultative maternal investment in the rare sex should be favoured by natural selection when breeders experience predictable variation in adult sex ratios (ASRs). We found significant spatial and predictable interannual changes in local ASRs within a natural population of the common lizard where the mean ASR is female-biased, thus validating the key assumptions of adaptive sex ratio models. We tested for facultative maternal investment in the rare sex during and after an experimental perturbation of the ASR by creating populations with female-biased or male-biased ASR. Mothers did not adjust their clutch sex ratio during or after the ASR perturbation, but produced sons with a higher body condition in male-biased populations. However, this differential sex allocation did not result in growth or survival differences in offspring. Our results thus contradict the predictions of adaptive models and challenge the idea that facultative investment in the rare sex might be a mechanism regulating the population sex ratio.  相似文献   

15.
Sex allocation theory predicts that parents should bias their reproductive investments toward the offspring sex generating the greatest fitness return. When females are the heterogametic sex (e.g., ZW in butterflies, some lizards, and birds), production of daughters is associated with an increased risk of offspring inviability due to the expression of paternal, detrimental recessives on the Z chromosome. Thus, daughters should primarily be produced when mating with partners of high genetic quality. When female sand lizards (Lacerta agilis) mate with genetically superior males, exhibiting high MHC Class I polymorphism, offspring sex ratios are biased towards daughters, possibly due to recruitment of more Z-carrying oocytes when females have assessed the genetic quality of their partners. If our study has general applicability across taxa, it predicts taxon-specific sex allocation effects depending on which sex is the heterogametic one.  相似文献   

16.
Sex allocation theory predicts that in a population with a biased operational sex ratio (OSR), parents will increase their fitness by adjusting the sex ratio of their progeny towards the rarer sex, until OSR has reached a level where the overproduction of either sex no longer increases a parent''s probability of having grandchildren. Furthermore, in a monogamous mating system, a biased OSR is expected to lead to lowered mean fecundity among individuals of the more abundant sex. We studied the influence of OSR on the sex ratio of newborns and on the population birth rate using an extensive data set (n = 14,420 births) from pre-industrial (1775-1850) Finland. The overall effect of current OSR on sex ratio at birth was significant, and in the majority of the 21 parishes included in this study, more sons were produced when males were rarer than females. This suggests that humans adjusted the sex ratio of their offspring in response to the local OSR to maximize the reproductive success of their progeny. Birth rate and, presumably, also population growth rate increased when the sex ratio (males:females) among reproductive age classes approached equality. However, the strength of these patterns varied across the parishes, suggesting that factors other than OSR (e.g. socioeconomic or environmental factors may also have influenced the sex ratio at birth and the birth rate.  相似文献   

17.
Sex allocation theory predicts that females should bias the production of offspring towards the sex that will maximize maternal fitness. Here we demonstrate evidence for nonrandom sex allocation by female ruffs (Philomachus pugnax), at both the individual and population level in relation to female condition. At the population level, female condition varies significantly across 3 years and is mirrored by population sex ratio, such that in years when females are in poor condition the population offspring sex ratio is female-biased, while in years when females are in better condition there was little or no bias. In the year when females were in overall poor condition, females in better condition produced more daughters. The same relationship is also revealed by comparing the sex ratios of individual females breeding in two consecutive years in different condition. As the condition of an individual female improves (across years) she tends to produce more female offspring. Although we have shown that, as in other birds, female condition is an important determinant of sex allocation, our results also suggest that such nonrandom allocation does not occur in every year, being particularly strong in a year when females, on average, are in poorer condition. We suggest that our results are consistent with the idea that skewing the sex ratio is likely to carry a cost to females and that it is adaptive only when the fitness differential between sons and daughters is sufficient to outweigh probable costs.  相似文献   

18.
1.  Optimal parental sex allocation depends on the balance between the costs of investing into sons vs. daughters and the benefits calculated as fitness returns. The outcome of this equation varies with the life history of the species, as well as the state of the individual and the quality of the environment.
2.  We studied maternal allocation and subsequent fecundity costs of bank voles, Myodes glareolus , by manipulating both the postnatal sex ratio (all-male/all-female litters) and the quality of rearing environment (through manipulation of litter size by −2/+2 pups) of their offspring in a laboratory setting.
3.  We found that mothers clearly biased their allocation to female rather than male offspring regardless of their own body condition. Male pups had a significantly lower growth rate than female pups, so that at weaning, males from enlarged litters were the smallest. Mothers produced more milk for female litters and also defended them more intensively than male offspring.
4.  The results agree with the predictions based on the bank vole life history: there will be selection for greater investment in daughters rather than sons, as a larger size seems to be more influencial for female reproductive success in this species. Our finding could be a general rule in highly polygynous, but weakly dimorphic small mammals where females are territorial.
5.  The results disagree with the narrow sense Trivers & Willard hypothesis, which states that in polygynous mammals that show higher variation in male than in female reproductive success, high-quality mothers are expected to invest more in sons than in daughters.  相似文献   

19.
Sexually reproducing organisms face a strong selective pressure to find a mate and ensure reproduction. An important criterion during mate‐selection is to avoid closely related individuals and subsequent potential fitness costs of resulting inbred offspring. Inbreeding avoidance can be active through kin recognition during mate choice, or passive through differential male and female‐biased sex ratios, which effectively prevents sib‐mating. In addition, sex allocation, or the resources allotted to male and female offspring, can impact mating and reproductive success. Here, we investigate mate choice, sex ratios, and sex allocation in dispersing reproductives (alates) from colonies of the termite Cubitermes tenuiceps. Termites have a short time to select a mate for life, which should intensify any fitness consequences of inbreeding. However, alates did not actively avoid inbreeding through mate choice via kin recognition based on genetic or environmental cues. Furthermore, the majority of colonies exhibited a female‐biased sex ratio, and none exhibited a male‐bias, indicating that differential bias does not reduce inbreeding. Sex allocation was generally female‐biased, as females also were heavier, but the potential fitness effect of this costly strategy remains unclear. The bacterium Wolbachia, known in other insects to parasitically distort sex allocation toward females, was present within all alates. While Wolbachia is commonly associated with termites, parasitism has yet to be demonstrated, warranting further study of the nature of the symbiosis. Both the apparent lack of inbreeding avoidance and potential maladaptive sex allocation implies possible negative effects on mating and fitness.  相似文献   

20.
Sex allocation theory predicts that parents are selected to bias their progeny sex ratio (SR) toward the sex that will benefit the most from parental quality. Because parental quality may differentially affect survival of sons and daughters, a pivotal test of the adaptive value of SR adjustment is whether parents overproduce offspring of the sex that accrues larger fitness advantages from high parental quality. However, this crucial test of the long‐term fitness consequences of sex allocation decisions has seldom been performed. In this study of the barn swallow (Hirundo rustica), we showed a positive correlation between the proportion of sons and maternal annual survival. We then experimentally demonstrated that this association did not depend on the differential costs of rearing offspring of either sex. Finally, we showed that maternal lifespan positively predicted lifespan of sons but not of daughters. Because in barn swallows lifespan is a strong determinant of lifetime reproductive success, the results suggest that mothers overproduce offspring of the sex that benefits the most from maternal quality. Hence, irrespective of mechanisms causing the SR bias and mother–son covariation in lifespan, we provide strong evidence that sex allocation decisions of mothers can highly impact on their lifetime fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号