首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
目的 筛查中国恒河猴Mamu-A*01基因,比较中国恒河猴和印度恒河猴的Mamu-A*01基因序列和功能是否相同.方法 PCR方法检测128只中国恒河猴,用特异性引物扩增Mamu-A*01基因,将PCR扩增后的产物克隆测序后与印度恒河猴的Mamu-A*01基因进行同源比对;酶联免疫斑点检测 (ELISPOT) 方法分别检测5只Mamu-A*01基因阳性和5只阴性恒河猴针对SIV、SHIV抗原肽p11C的特异性CTL反应.结果 共筛查出5 只Mamu-A*01基因阳性恒河猴 (3.91%),经测序分析后与印度恒河猴的同源性可达99.1 %.这5只均为SIV/SHIV感染恒河猴,其中四只SIV感染的猴的ELISPOT结果显示针对p11C的高频CTL反应,斑点数在500-1400/106 PBMCs之间,而另1只SHIV感染的恒河猴及5只阴性猴没有斑点出现.结论 中国恒河猴含有Mamu-A*01基因,基因频率有区域性差异,中国恒河猴的Mamu-A*01可提呈特异性抗原肽p11C.  相似文献   

2.
恒河猴Mamu-A^*01基因与SIV/SHIV感染相关的研究进展   总被引:2,自引:2,他引:0  
SIV/SHIV感染的恒河猴是研究艾滋病及艾滋病药物筛选、疫苗评价较理想的动物模型。MHC在细胞免疫中起着关键作用,研究表明,MHC-I类分子的多态性与SIV/SHIV感染者的疾病进展有着明显的关联作用,Mamu-A^*01是恒河猴中的一种MHC-I类分子,它可以呈递特定的病毒蛋白片段到细胞的表面,从而激发CTL反应。国外发现Mamu-A^*01阳性的猴艾滋病恒河猴会出现疾病进展缓慢,存活时间长等特征。本文就恒河猴Mamu-A^*01基因与SIV/SHIV感染相关的研究进展做一综述,以期进一步加深对MHC在疫苗研究中的作用的了解,并促进更行之有效地对HIV/AIDS疫苗进行评价。  相似文献   

3.
中国不同地域恒河猴MHC-Ⅰ型部分等位基因的调查   总被引:2,自引:0,他引:2  
采用序列特异性引物-聚合酶链式反应(PCR-SSP)分型方法对在华南灵长类动物研究中心繁殖的247只中国恒河猴(Macaca mulatta)(其中30只来源于广西、34只来源于海南,183只来源于川西、安徽等内陆地区杂交群)的Mamu-A01、A02、A08、B01和NA7等5个MHC-Ⅰ型分子位点进行检测。结果显示,A01、A02发现于海南群和杂交群,阳性率均小于8.8%;A08发现于杂交群中,阳性率小于3.8%;B01发现于广西群和杂交群,阳性率均大于17.48%;NA7在3个猴群中均有发现,阳性率均大于32.4%。中国不同地域恒河猴群体携带的5个MHC-Ⅰ型等位基因的频率存在明显差异,通过与印度的恒河猴比较,中国恒河猴与印度恒河猴携带的MHC-Ⅰ等位基因也存在显著的差异。  相似文献   

4.
利用序列特异引物聚合酶链反应(polymerase chain reactionsequence-specific primers,PCR-SSP)方法扩增中国恒河猴的主要组织相容性复合体II类基因Mamu-DRB*W101、-DRB*W201,初步了解中国恒河猴中Mamu-DRB*W101、-DRB*W201基因的阳性率。采集中国恒河猴静脉血,用DNA提取试剂盒提取全血DNA,分别用Mamu-DRB*W101、-DRB*W201特异引物PCR扩增Mamu-DRB*W101、-DRB*W201基因的第二外显子区域,并对扩增出的阳性条带进行测序,与已知序列对比验证序列是否正确。共检测了来自136只中国恒河猴的样本,PCR检测出Mamu-DRB*W101阳性个体10只,Mamu-DRB*W201阳性个体也是10只,其阳性个体所占比率均为7.35%。测序结果表明,PCR扩增产物的核苷酸序列与基因库中的序列完全一致。本研究表明中国恒河猴中存在Mamu-DRB*W101、-DRB*W201基因阳性个体,为中国恒河猴在AIDS研究中的应用及进一步分析中国恒河猴MHC II类基因提供了基础。  相似文献   

5.
利用序列特异引物聚合酶链反应(polymerase chain reactionsequence-specific primers,PCR-SSP)方法扩增中国恒河猴的主要组织相容性复合体II类基因Mamu-DRB*W101、- DRB*W201,初步了解中国恒河猴中Mamu-DRB*W101、- DRB*W201基因的阳性率。采集中国恒河猴静脉血,用DNA提取试剂盒提取全血DNA,分别用Mamu-DRB*W101、- DRB*W201特异引物PCR扩增Mamu-DRB*W101、- DRB*W201基因的第二外显子区域,并对扩增出的阳性条带进行测序,与已知序列对比验证序列是否正确。共检测了来自136只中国恒河猴的样本,PCR检测出Mamu-DRB*W101阳性个体10只,Mamu-DRB*W201阳性个体也是10只,其阳性个体所占比率均为7.35%。测序结果表明,PCR扩增产物的核苷酸序列与基因库中的序列完全一致。本研究表明中国恒河猴中存在Mamu-DRB*W101、- DRB*W201基因阳性个体,为中国恒河猴在AIDS研究中的应用及进一步分析中国恒河猴MHC II类基因提供了基础。  相似文献   

6.
恒河猴是应用最广泛的非人灵长类实验动物,其MHC基因是一个庞大的与免疫功能密切相关的基因群(也称为Mamu基因),在进化过程形成了Mamu基因不同的存在状态,使得不同个体的Mamu基因在数量和功能上有所差异,同时有些个体还产生了特异性的MHC基因,它的多态性和免疫反应的复杂性相对应。因此,恒河猴MHC多态性的研究,有助于生物科学的发展及指导以恒河猴为动物模型的各种实验。本文主要阐述了恒河猴Mamu基因的结构和功能,以及部分MHC等位基因与疾病的关系,并简要描述了中国恒河猴特异性的MHC基因。  相似文献   

7.
利用线粒体12S rRNA基因和cyt b基因部分序列,通过DNA序列比对的方法,对毫州市药品监督管理局送检的三件猴骨样品(BZ01、BZ02和BZ03)进行了分子鉴定。结果表明,BZ01号样品为藏酋猴(Macaca thibetana),BZ02和BZ03号样品为猕猴(Macaca mulatta),通过本文的研究,作者还提出,在利用DNA序列比对法进行近缘物种的鉴定时,不同种群间的DNA序列变异,可能对结果造成一定的影响。  相似文献   

8.
1985年1月13日从云南省思茅地区澜仓县捕获一雄性恒河猴(Macaca mulatta)约1岁,体重1.6公斤,外观正常。经过3个月的检疫,未发现异常情况,将该猴放入大铁笼内与其它10只幼猴一起人工喂养。1987年下半年,该猴全身被毛几乎脱光,1988年初全身长出白毛。猴子的脱毛现象比较常见,但脱毛后长出的新毛全部白化实属罕见。其原因有待今后进一步探讨。恒河猴白化症一例@许定泽$中国实验动物云南西双版纳灵长类中心!景洪 @赛白$中国实验动物云南西双版纳灵长类中心!景洪  相似文献   

9.
对安徽省实验猕猴中心的安徽恒河猴进行了微生物(包括病毒和病原菌)和寄生虫检测。对恒河猴的病毒检测结果发现,猕猴疱疹病毒1型(BV)和猴痘病毒(SPV)抗体的阳性率分别为20.7%(6/29)和10.0%(2/20),20只恒河猴中没有发现猴反转录D型病毒(SRV)、猴免疫缺陷病毒(SIV)和猴T细胞趋向性病毒Ⅰ型(STLV—1)的抗体。5只受检的人工繁育的安徽恒河猴没有感染沙门菌、皮肤病原真菌、志贺菌和结核分枝杆菌的这四种病原菌。肉眼检测恒河猴体表,未发现体外寄生虫。39份人工繁殖的恒河猴粪便样品的总寄生虫感染率为38.5%,检测到溶组织内阿米巴和5种蠕虫(粪类圆线虫、猴结节线虫、绦虫、钩虫、蛔虫),感染率最高的是粪类圆线虫和猴结节线虫。本次调查表明,安徽恒河猴无特殊疾病,健康状况基本良好,可以建立普通级的实验恒河猴,实现安徽恒河猴的实验动物化。  相似文献   

10.
人工饲养恒河猴、食蟹猴的繁殖性能初报   总被引:2,自引:0,他引:2  
目的探索北京地区人工饲养恒河猴与食蟹猴的繁殖性能,为温带地区猕猴的人工饲养和繁殖方式提供借鉴。方法对军事医学科学院实验动物中心饲养的317只恒河猴繁殖群(30只雄猴,287只雌猴)和78只食蟹猴繁殖群(8只雄猴,70只雌猴)近两年的繁殖性状进行观察和统计分析。结果恒河猴母猴妊娠率、繁殖率和成活率分别为60.73%、54.45%和96.89%。食蟹猴母猴妊娠率、繁殖率和成活率分别为79.86%、56.12%和75.00%。结论食蟹猴和恒河猴可以成功的在温带地区饲养和繁殖,但人工饲养食蟹猴的妊娠率与产仔率较恒河猴高,而仔猴成活率则低于恒河猴。  相似文献   

11.
12.
Although the SIV-infected Indian rhesus macaque (Macaca mulatta) is the animal model most widely used for studying HIV infection, our current understanding of the functional macaque MHC class I molecules is limited. To date, SIV-derived CD8+ T lymphocyte epitopes from only three high frequency macaque MHC class I molecules have been extensively characterized. In this study, we defined the peptide-binding properties of the high frequency Indian rhesus macaque class I molecule, Mamu-B*01 ( approximately 26%). We first identified a preliminary binding motif by eluting and sequencing endogenously bound Mamu-B*01 ligands. We further characterized the peptide-binding characteristics using panels of single amino acid substitution analogs. Using this detailed motif, 507 peptides derived from SIV(mac)239 were identified and tested for their Mamu-B*01 binding capacity. Surprisingly, only 11 (2.2%) of these motif-containing peptides bound with IC50 values < or =500 nM. We assessed the immunogenicity of these peptides using freshly isolated PBMC from ten Mamu-B*01+ SIV-infected rhesus macaques in IFN-gamma ELISPOT and IFN-gamma/TNF-alpha intracellular cytokine staining assays. Lymphocytes from these SIV-infected macaques responded to none of these peptides. Furthermore, there was no sequence variation indicative of escape in the regions of the virus that encoded these peptides. Additionally, we could not confirm previous reports of SIV-derived Mamu-B*01-restricted epitopes in the Env and Gag proteins. Our results suggest that the high frequency MHC class I molecule, Mamu-B*01, is not involved in SIV-specific CD8+ T lymphocyte responses.  相似文献   

13.
Rhesus macaque (Macaca mulatta) and long-tailed macaque (Macaca fascicularis) are the 2 most commonly used primate model species in biomedical sciences. Although morphological studies have revealed a weak hybridization at the interspecific contact zone, in the north of Indochina, a molecular study has suggested an ancient introgression from rhesus to long-tailed macaque into the Indo-Chinese peninsula. However, the gene flow between these 2 taxa has never been quantified using genetic data and theoretical models. In this study, we have examined genetic variation within and between the parapatric Chinese rhesus macaque and Indo-Chinese long-tailed macaque populations, using 13 autosomal, 5 sex-linked microsatellite loci and mitochondrial DNA sequence data. From these data, we assessed genetic structure and estimated gene flow using a Bayesian clustering approach and the "Isolation with Migration" model. Our results reveal a weak interspecific genetic differentiation at both autosomal and sex-linked loci, suggesting large population sizes and/or gene flow between populations. According to the Bayesian clustering, Chinese rhesus macaque is a highly homogeneous gene pool that contributes strongly to the current Indo-Chinese long-tailed macaque genetic makeup, whether or not current admixture is assumed. Coalescent simulations, which integrated the characteristics of the loci, pointed out 1) a higher effective population size in rhesus macaque, 2) no mitochondrial gene flow, and 3) unilateral and male-mediated nuclear gene flow of approximately 10 migrants per generation from rhesus to long-tailed macaque. These patterns of genetic structure and gene flow suggest extensive ancient introgression from Chinese rhesus macaque into the Indo-Chinese long-tailed macaque population.  相似文献   

14.
MHC-dependent CD8(+) T cell responses have been associated with control of viral replication and slower disease progression during lentiviral infections. Pig-tailed macaques (Macaca nemestrina) and rhesus monkeys (Macaca mulatta), two nonhuman primate species commonly used to model HIV infection, can exhibit distinct clinical courses after infection with different primate lentiviruses. As an initial step in assessing the role of MHC class I restricted immune responses to these infections, we have cloned and characterized classical MHC class I genes of pig-tailed macaques and have identified 19 MHC class I alleles (Mane) orthologous to rhesus macaque MHC-A, -B, and -I genes. Both Mane-A and Mane-B loci were found to be duplicated, and no MHC-C locus was detected. Pig-tailed and rhesus macaque MHC-A alleles form two groups, as defined by 14 polymorphisms affecting mainly their B peptide-binding pockets. Furthermore, an analysis of multiple pig-tailed monkeys revealed the existence of three MHC-A haplotypes. The distribution of these haplotypes in various Old World monkeys provides new insights about MHC-A evolution in nonhuman primates. An examination of B and F peptide-binding pockets in rhesus and pig-tailed macaques suggests that their MHC-B molecules present few common peptides to their respective CTLs.  相似文献   

15.
MHC class I A region diversity and polymorphism in macaque species   总被引:11,自引:7,他引:4  
The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing.  相似文献   

16.
ABSTRACT: BACKGROUND: The genetic background of the cynomolgus macaque (Macaca fascicularis) is made complex by the high genetic diversity, population structure, and gene introgression from the closely related rhesus macaque (Macaca mulatta). Herein we report the whole-genome sequence of a Malaysian cynomolgus macaque male with more than 40-fold coverage, which was determined using a resequencing method based on the Indian rhesus macaque genome. RESULTS: We identified approximately 9.7 million single nucleotide variants (SNVs) between the Malaysian cynomolgus and the Indian rhesus macaque genomes. Compared with humans, a smaller nonsynonymous/synonymous SNV ratio in the cynomolgus macaque suggests more effective removal of slightly deleterious mutations. Comparison of two cynomolgus (Malaysian and Vietnamese) and two rhesus (Indian and Chinese) macaque genomes, including previously published macaque genomes, suggests that Indochinese cynomolgus macaques have been more affected by gene introgression from rhesus macaques. We further identified 60 nonsynonymous SNVs that completely differentiated the cynomolgus and rhesus macaque genomes, and that could be important candidate variants for determining species-specific responses to drugs and pathogens. The demographic inference using the genome sequence data revealed that Malaysian cynomolgus macaques have experienced at least three population bottlenecks. CONCLUSIONS: This list of whole-genome SNVs will be useful for many future applications, such as an array-based genotyping system for macaque individuals. High-quality whole-genome sequencing of the cynomolgus macaque genome may aid studies on finding genetic differences that are responsible for phenotypic diversity in macaques and may help control genetic backgrounds among individuals.  相似文献   

17.
The SIV-infected rhesus macaque (Macaca mulatta) is the most established model of AIDS disease systems, providing insight into pathogenesis and a model system for testing novel vaccines. The understanding of cellular immune responses based on the identification and study of Major Histocompatibility Complex (MHC) molecules, including their MHC:peptide-binding motif, provides valuable information to decipher outcomes of infection and vaccine efficacy. Detailed characterization of Mamu-B*039:01, a common allele expressed in Chinese rhesus macaques, revealed a unique MHC:peptide-binding preference consisting of glycine at the second position. Peptides containing a glycine at the second position were shown to be antigenic from animals positive for Mamu-B*039:01. A similar motif was previously described for the D(d) mouse MHC allele, but for none of the human HLA molecules for which a motif is known. Further investigation showed that one additional macaque allele, present in Indian rhesus macaques, Mamu-B*052:01, shares this same motif. These "G2" alleles were associated with the presence of specific residues in their B pocket. This pocket structure was found in 6% of macaque sequences but none of 950 human HLA class I alleles. Evolutionary studies using the "G2" alleles points to common ancestry for the macaque sequences, while convergent evolution is suggested when murine and macaque sequences are considered. This is the first detailed characterization of the pocket residues yielding this specific motif in nonhuman primates and mice, revealing a new supertype motif not present in humans.  相似文献   

18.
Radiation and phylogeography in the Japanese macaque, Macaca fuscata   总被引:5,自引:0,他引:5  
The Japanese macaque (Macaca fuscata) presumably differentiated from eastern rhesus macaque (Macaca mulatta) populations during the Pleistocene and the two species are closely related. In order to analyse speciation and subspeciation events in the Japanese macaque and to describe historical and current relationships among their populations, we sequenced and analysed a fragment of 392bp of mitochondrial DNA (mtDNA) control region in 50 individuals belonging to six populations of Japanese macaque and compared these sequences with 89 eastern rhesus macaque control region sequences from GenBank/EMBL database. There were high genetic similarities between both species and only two positions were fixed within each species, which supports the inclusion of the Japanese macaque in a single species with eastern populations of rhesus macaques. Japanese macaque ancestors colonised Japan after the separation of the two species, estimated at between 0.31 and 0.88 million years ago (Mya). The star-like phylogeny, multimodal mismatch distribution, and lack of correlation between geographic and genetic distances are in accordance with a rapid dispersion of macaques throughout the archipelago after the arrival into Japan. The species shows low genetic variation within populations and high levels of genetic differentiation among populations with no mtDNA haplotype shared across populations. Genetic distances between Yakushima macaques (Macaca fuscata yakui) and any other population of Macaca fuscata fuscata subspecies are comparable to the distances between populations of Honshu, Awajishima, and Kyushu, not supporting the classification of Yakushima macaques as a different subspecies.  相似文献   

19.
The utility of the rhesus macaque as an animal model in both HIV vaccine development and pathogenesis studies necessitates the development of accurate and efficient major histocompatibility complex (MHC) genotyping technologies. In this paper, we describe the development and application of allele-specific polymerase chain reaction (PCR) amplification for the simultaneous detection of eight MHC class I alleles from the rhesus macaque (Macaca mulatta) of Indian descent. These alleles were selected, as they have been implicated in the restriction of CD8(+) T cell epitopes of simian immunodeficiency virus (SIV). Molecular typing of Mamu-A 01, Mamu-A 02, Mamu-A 08, Mamu-A 11, Mamu-B 01, Mamu-B 03, Mamu-B 04, and Mamu-B 17 was conducted in a high throughput fashion using genomic DNA. Our amplification strategy included a conserved internal control target to minimize false negative results and can be completed in less than 5 h. We have genotyped over 4,000 animals to establish allele frequencies from colonies all over the western hemisphere. The ability to identify MHC-defined rhesus macaques will greatly enhance investigation of the immune responses, which are responsible for the control of viral replication. Furthermore, application of this technically simple and accurate typing method should facilitate selection, utilization, and breeding of rhesus macaques for AIDS virus pathogenesis and vaccine studies.  相似文献   

20.
Clinical and necropsy records of malformations in Old World monkeys were compiled. The numbers of malformations and birth incidence rate for each species were: Rhesus macaque (Macaca mulatta) 3 (1.02%); Cynomolgus macaque (Macaca fascicularis) 11 (1.62%); Stumptail macaque (Macaca arctoides) 3 (1.55%); African green monkey (Cercopithecus aethiops) 4 (1.5%). There was one pair of rhesus twins (twinning rate: 0.34%). Cardiovascular and central nervous system lesions accounted for 55% of all malformations. Only two of the malformations were in inbred infants. Nine of twenty-one colony-born malformed infants lived 24 hours or more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号