首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast sterol auxotroph GL-7, which grows well on ergosterol and cholesterol, was used to study the ability of cholesteryl-(2′-hydroxy)-ethyl ether to substitute for cholesterol. In this compound the 3j3-hydroxyl group of cholesterol is replaced by ethylene glycol and the resulting ether still retains the amphiphilic character of cholesterol. Cholesteryl-(2Lhydroxy)-ethyl ether was found to support the growth of GL-7 as effectively as cholesterol. Crystal violet permeability and membrane order parameter determined using a spin label were similar for cells grown on these sterols. The ability of such ethylene glycol derivatives to substitute for cholesterol in both artificial and natural membranes should help in designing suitable spacers through which molecules can be linked to cholesterol without affecting the normal function of cholesterol in membranes. This in turn should prove useful in studies with surface-modified liposomes.  相似文献   

2.
The Tetrahymena nonreversal (TNR) mutants of Tetrahymena thermophila are behavioral mutants with nonexcitable membranes. When cells of the tnrB mutant were mated with wild type, a phenotypic change occurred about 1 h after pair formation. The pairs began to lose their heterotypic character in stimulation solution containing high potassium and, within 1 1/2 h, they were not distinguishable from the wild-type homotypic pairs. On the contrary, although pairs of the tnrA and wild type also lost their heterotypic character about 1 1/2 h after pair formation, they never showed a full response as wild-type homotypic pairs. When tnrA was mated with tnrB, more than 50% of pairs expressed a heterotypic pair character 2 h after pair formation, consistent with the tnrB defect having been rescued but not the tnrA defect. Thus, conjugation rescue of the mutant phenotype is locus dependent and probably reflects the nature of the gene products controlling voltage-dependent Ca2+ channels.  相似文献   

3.
4.
More than 80% of the cellular ergosterol can be replaced by cholesterol in a sterol requiring mutant strain of Saccharomyces cerevisiae. The effect of this replacement, as well as the effect of sterol starvation on the uptake and exit of cytosine and α-aminoisobutyric acid (α-AIBA) was studied in an attempt to elucidate the role of sterols in cellular permeability. Neither the exit of cytosine nor the exit of α-AIBA was affected by changes in the sterol content of the cell. Cells grown on cholesterol or on ergosterol had very similar rates of cytosine uptake, but a lower rate was found for sterol-starved cells. This difference may be a consequence of the cellular growth rate. However, nystatin induces a much slower exit of α-AIBA in cells grown on cholesterol than in cells grown on ergosterol. This strongly suggests that a change in membrane structure has taken place.  相似文献   

5.
Ergosterol biosynthesis and homeostasis in the parasitic protozoan Trypanosoma brucei was analyzed by RNAi silencing and inhibition of sterol C24β-methyltransferase (TbSMT) and sterol 14α-demethylase [TbSDM (TbCYP51)] to explore the functions of sterols in T. brucei growth. Inhibition of the amount or activity of these enzymes depletes ergosterol from cells at <6 fg/cell for procyclic form (PCF) cells or <0.01 fg/cell for bloodstream form (BSF) cells and reduces infectivity in a mouse model of infection. Silencing of TbSMT expression by RNAi in PCF or BSF in combination with 25-azalanosterol (AZA) inhibited parasite growth and this inhibition was restored completely by adding synergistic cholesterol (7.8 μM from lipid-depleted media) with small amounts of ergosterol (1.2 μM) to the medium. These observations are consistent with the proposed requirement for ergosterol as a signaling factor to spark cell proliferation while imported cholesterol or the endogenously formed cholesta-5,7,24-trienol act as bulk membrane components. To test the potential chemotherapeutic importance of disrupting ergosterol biosynthesis using pairs of mechanism-based inhibitors that block two enzymes in the post-squalene segment, parasites were treated with AZA and itraconazole at 1 μM each (ED50 values) resulting in parasite death. Taken together, our results demonstrate that the ergosterol pathway is a prime drug target for intervention in T. brucei infection.  相似文献   

6.
Saccharomyces cerevisiae GL7 cells require exogenous sterol and unsaturated fatty acid for growth. When grown in the presence of cholesterol or 7-dehydrocholesterol, the cells incorporated less saturated fatty acid into phospholipids than cells grown with ergosterol, stigmasterol, or beta-sitosterol as the sterol source. This lower saturated fatty acid content was most pronounced in phosphatidylethanolamine, slightly less so in phosphatidylcholine, and least evident in phosphatidylserine and phosphatidylinositol. Growing the cells with the various sterols did not affect the ratios of individual phospholipids. The ability of strain GL7 to use 7-dehydrocholesterol as the only sterol supplement for growth was dependent upon the nature of the unsaturated fatty acids added to the growth medium. In the presence of linoleic, linolenic, or a mixture of palmitoleic and oleic acids, excellent growth was observed with either ergosterol, cholesterol, or 7-dehydrocholesterol. However, when the medium was supplemented with either oleic or petroselenic acid, the cells grew more slowly (oleic) or much more poorly (petroselenic) with 7-dehydrocholesterol than with ergosterol. A specific relationship between sterol structure and membrane fatty acid composition in yeast cells is implied.  相似文献   

7.
To investigate the susceptibilities of fungal and mammalian cells to amphotericin B (AmB), AmB-loaded lysophosphatidylcholine (LPC)micelles as drug delivery vehicles were incubated at 37 degrees C with phosphatidylcholine vesicles containing different sterols as model systems for fungal and mammalian cells. The binding and kinetics of AmB to sterols in the membranes were judged by UV-visible spectroscopy. In the 91% monomeric form, AmB interacted rapidly with ergosterol and slowly with 7-dehydrocholesterol (7-DHC), while it did not interact with cholesterol. In the 50% monomeric form, AmB formed complexes more rapidly with ergosterol or 7-DHC than in the monomeric form, whereas it did not still interact with cholesterol. The interaction was also characterized by resonance energy transfer between the fluorescent probe trimethylammonium diphenylhexatriene (TMA-DPH) and AmB. In the 91% monomeric form, AmB caused initial fluorescence quenching in bilayer membranes containing any sterol as well as sterol-free bilayer membranes due to the release of AmB and its incorporation within the membranes. However, a second phase of increasing fluorescence was found in the case of ergosterol alone. On the other hand, in the 47% monomeric form, AmB gave a biphasic intensity profile in membranes containing any sterol as well as sterol-free membranes. However, the extent of the second phase of increasing fluorescence intensity was markedly dependent upon sterol composition. Studies using sterol-containing vesicles provide important insights into the role of the aggregation state of AmB in its effects on cells.  相似文献   

8.
Amphotericin B (AmB) is a widely used polyene antibiotic to treat systemic fungal infections. This drug is known to be lethal to fungal cells but it has also side effect toxicity on mammalian cells. The mechanism of action of AmB is thought to be related to the difference of the main sterol present in the mammalian and the fungal cells, namely cholesterol and ergosterol, respectively. The effect of AmB has been investigated on pure dipalmitoylphosphatidylcholine (DPPC) and on cholesterol- and ergosterol-containing DPPC bilayers by 2H NMR spectroscopy. The 2H NMR results first confirm that AmB forms a complex with sterol-free DPPC bilayers, the interaction causing the structurization of the lipids and the increase of the gel-to-lamellar fluid DPPC phase transition temperature with increasing concentration of the antibiotic. The results also show that the effects of AmB on cholesterol- and ergosterol-containing DPPC bilayers are remarkably different. On one hand, the drug causes an increase of the orientational order of the lipid acyl chains in cholesterol-containing membranes, mostly in high cholesterol content membranes. On the other hand, the addition of AmB disorders the DPPC acyl chains when ergosterol is present. This is thought to be due to the direct complexation of the ergosterol by AmB, causing the sterol ordering effect to be weaker on the lipids.  相似文献   

9.
Mutants of Saccharomyces cerevisiae were isolated which were blocked in heme biosynthesis and required heme for growth on a nonfermentable carbon source. They were rho+, and grew fermentatively on ergosterol or cholesterol and Tween 80, as a source of oleic acid. Cells grown on ergosterol and Tween 80 lacked cytochromes and catalase which were restored by growth on heme. The mutants comprised five nonoverlapping complementation groups. Tetrad analysis showed that the pleiotropic properties of each of the mutants resulted from a single mutation in one of five unlinked loci (hem1 to hem5) affecting heme biosynthesis. Biochemical studies confirmed that each mutation resulted in loss of a single enzyme activity. hem1 mutants grew on delta-aminolevulinate and lacked delta-aminolevulinate synthase activity, hem2 mutants lacked delta-aminolevulinate dehydratase, and hem3 mutants uroporphyrin I synthase. Mutants in hem1, hem2, and hem3 had an additional requirement for methionine on synthetic medium supplemented with either heme or ergosterol and Tween 80, owing to a lack of sulfite reductase which contains siroheme, a modified uroporphyrin III. Since hem4 and hem5 mutants have sulfite reductase activity under all growth conditions, they are blocked after uroporphyrin III. Cell extracts of a hem4 mutant incubated with delta-aminolevulinate accumulated coproporphyrin III suggesting a block in coproporphyrinogenase, the enzyme which converts coproporphyrinogen III to protoporphyrinogen. Cells and extracts of a hem5 mutant accumulated protoporphyrin IX. Since it was the only mutant that grew on heme but not on protoporphyrin IX, a block in ferrochelatase was suggested for this strain. Mutant strains grown on heme had the sterol composition of wild type cells, whereas without heme only squalene, small amounts of lanosterol, and added sterol was observed. A heme product therefore participates in the transformation of lanosterol to ergosterol. A hem3 mutant was isolated which was also blocked between 2,3-oxidosqualene and lanosterol (erg12). When grown on lanosterol or ergosterol (with Tween 80) it accumulated a compound which was identified as 2,3-oxidosqualene by comparison with the synthetic compound in thin layer and gas-liquid chromatography, and by proton magnetic resonance and mass spectroscopy. Supplementation with heme did not remove the requirement for sterol, but it enabled the mutant to convert lanosterol to ergosterol.  相似文献   

10.
The typical sterol of animal membranes (cholesterol) failed to support normal growth of yeast under anaerobic conditions when compared to the growth induced by the organism's natural sterol (ergosterol). This pathology was evident in strongly reduced numbers of cells, failure of budded cells to separate, and premature death. This study demonstrates that one or all of the Δ5,7-, Δ22-, and 24β-methyl groupings present in ergosterol are functionally significant.  相似文献   

11.
The aldol reaction between cis-3-((tert-butyldiphenylsilyloxy)methyl)oxirane-2-carbaldehyde and ethyl-2-(trimethylsilyloxy)-2-propenoate promoted by boron trifluoride diethyl etherate was reinvestigated. By varying the work-up conditions, a new 2-deoxy-2-fluoro heptulosonic ester analogue was synthesized. Derivatizations and detailed NMR analysis allowed the complete characterization of this fluoro analogue and its derivatives.  相似文献   

12.
Sterols are essential membrane components of eukaryotic cells and are important for membrane organization and function. Cholesterol is the most representative sterol present in higher eukaryotes. It is often found distributed non-randomly in domains or pools in biological and model membranes. Cholesterol-rich functional microdomains (lipid rafts) are often implicated in cell signaling and membrane traffic. Interestingly, lipid rafts have also recently been isolated from organisms such as yeast and Drosophila, which have ergosterol as their major sterol component. Although detailed biophysical characterization of the effect of cholesterol on membranes is well documented, the effect of ergosterol on the organization and dynamics of membranes is not very clear. We have monitored the effect of cholesterol and ergosterol on the dynamic properties of both fluid (POPC) and gel (DPPC) phase membranes utilizing the environment-sensitive fluorescent membrane probe DPH. Our results from steady state and time-resolved fluorescence measurements show, for the first time, differential effects of ergosterol and cholesterol toward membrane organization. These novel results are relevant in the context of lipid rafts in ergosterol-containing organisms such as Drosophila which maintain a low level of sterol compared to higher eukaryotes.  相似文献   

13.
The Tetrahymena nonreversal (TNR) mutants of Tetrahymena thermophila are behavioral mutants with nonexcitable membranes. When cells of the tnrB mutant were mated with wild type, a phenotypic change occurred about l h after pair formation. The pairs began to lose their heterotypic character in stimulation solution containing high potassium and, within 1 1/2h, they were not distinguishable from the wild-type homotypic pairs. On the contrary, although pairs of the tnrA and wild type also lost their heterotypic character about 1 1/2 h after pair formation, they never showed a full response as wild-type homotypic pairs. When tnrA was mated with tnrB more than 50% of pairs expressed a heterotypic pair character 2 h after pair formation, consistent with the tnrB defect having been rescued but not the tnrA defect. Thus, conjugation rescue of the mutant phenotype is locus dependent and probably reflects the nature of the gene products controlling voltage-dependent Ca2+ channels. © 1992 Wiley-Liss, Inc.  相似文献   

14.
Yeast cells almost completely deficient in all cytochromes were obtained by introducing two defective nuclear genes, cyd1 and cyc4, into the same haploid strain. The action of the two mutant genes is synergistic, since either gene acting singly results in only partial cytochrome deficiency. Normal synthesis of all cytochromes can be restored in the double mutant by adding delta-aminolevulinic acid to the growth medium. The optimum concentration of delta-aminolevulinate for restoration of cytochrome synthesis is about 40 muM; when higher concentrations are used, synthesis of cytochromes is partially suppressed, particularly that of cytochrome a.a3. Growth yield of the double mutant is stimulated by ergosterol and Tween 80, a source of unsaturated fatty acid. Methionine stimulates further. None of these nutrients is required for growth when sufficient delta-aminolevulinic acid is present in the growth medium. With respect to nutritional responses, the single-gene, cytochrome-deficient mutant, ole3, behaves like the double mutant. The frequency of the p-mutation in the double mutant grown in the absence of ergosterol, Tween 80, and delta-aminolevulinic acid is at least 15%. The frequency can be reduced to less than 1% by either delta-aminolevulinic acid or Tween 80. Ergosterol alone does not decrease the p- frequency. The ole3 mutant does not exhibit increased p-frequency under similar conditions of unsaturated fatty acid deficiency.  相似文献   

15.
Exogenous ergosterol and cholesterol were found to affect the growth and lipogenesis of the oomycete fungusPythium debaryanum, which is unable to synthesize de novo steroid compounds. These sterols stimulated the growth of the fungus during its submerged cultivation in glucose-peptone medium. This was accompanied by the shortening of the lag phase, the lengthening of the period of active growth, and by a 3.7-or 4.3-fold increase in the maximum biomass in response to the addition of ergosterol or cholesterol, respectively. In the presence of ergosterol, the cellular content of polyenoic fatty acids increased, and the relative content of eicosapolyenoic fatty acids reached 31.4% of the total amount of fatty acids in cells. Conversely, cholesterol decreased the cellular content of polyenoic acids, and the relative content of eicosapolyenoic acids fell to 19.6% of the total amount of fatty acids. It may be inferred that exogenous sterols enhance the yield of pharmacologically active polyenoic acids because of the growth stimulation.  相似文献   

16.
Populations of cells suspended anaerobically in buffered (pH 4.5) M ethanol remained viable to a greater extent when their plasma membranes were enriched in linoleyl rather than oleyl residues irrespective of the nature of the sterol enrichment. However, populations with membranes enriched in ergosterol or stigmasterol and linoleyl residues were more resistant to ethanol than populations enriched in campesterol or cholesterol and linoleyl residues. Populations enriched in ergosterol and cetoleic acid lost viability at about the same rate as those enriched in oleyl residues, while populations grown in the presence of this sterol and palmitoleic acid were more resistant to ethanol. Suspending cells in buffered ethanol for up to 24 h did not lower the ethanol concentration.  相似文献   

17.
Cholesterol (ergosterol in yeast) in conjunction with sphingolipids forms tight-packing microdomains, 'lipid rafts,' which are thought to be critical for intracellular protein sorting in eukaryotic cells. When the activity of Erg9 involved in the first step of ergosterol biogenesis, but not that of Erg6 involved in a late step, is compromised, vacuolar degradation of the tryptophan permease Tat2 is promoted. It is unknown whether this difference simply reflects the difference between the inhibition of early and late steps. Here, it is shown that the deletion in ERG2 , which encodes sterol C8–C7 isomerase (the next enzymatic step after Erg6), promotes the vacuolar degradation of Tat2. It suggests that the accumulation of specific sterol intermediates may alter lipid raft structures, promoting Tat2 degradation. The erg2 Δ-mediated Tat2 degradation required Tat2 ubiquitination. Lipid raft association of Tat2 is compromised in erg2 Δ cells. The erg2 Δ mutation showed a synthetic growth defect with the trp1 mutation, indicating that Tat2 sorting is preferentially compromised in these mutants. Consistent with this notion, the raft-associated protein Pma1 was associated with detergent-resistant membranes and sorted to the plasma membrane. This study suggests the potential for the pharmacological control of cellular nutrient uptake in humans by regulating enzymes involved in cholesterol biogenesis.  相似文献   

18.
Stereochemical specificity for sterols in Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
When sterol biosynthesis in oxygen-deprived wild type Saccharomyces cerevisiae was prevented by the presence of 2,3-iminosqualene, an inhibitor of 2,3-oxidosqualene cyclase, an absolute requirement for a sterol with a 24 beta-methyl group was found. Neither the configuration nor the size of the alkyl group at C-24 could be altered. For instance, while 24 beta-methylcholesterol (22-dihydrobrassicasterol) permitted good growth, contrary to earlier work without the inhibitor no growth at all resulted from the presence of cholesterol or its 24 alpha-methyl-, 24 alpha-ethyl-, or 24 beta-ethyl derivatives (campesterol, sitosterol, and clionasterol, respectively). The only sterol lacking a 24 beta-methyl group which allowed growth was desmosterol (24-dehydro-cholesterol), but desmosterol was metabolized to 24 beta-methylcholesterol by C1-transfer and reduction. When cholesterol supported growth in the absence of the inhibitor, small amounts of endogenously synthesized 24 beta-methylsterols (ergosterol and 22-dihydroergosterol) were identified. This previously unrecognized absolute specificity for both chirality and bulk at C-24 suggests the involvement of protein binding in at least one of the roles which sterol plays in this single-celled eukaryote.  相似文献   

19.
Ergosterol depletion independently inhibits two aspects of yeast mating: pheromone signaling and plasma membrane fusion. In signaling, ergosterol participates in the recruitment of Ste5 to a polarized site on the plasma membrane. Ergosterol is thought to form microdomains within the membrane by interacting with the long acyl chains of sphingolipids. We find that although sphingolipid-free ergosterol is concentrated at sites of cell-cell contact, transmission of the pheromone signal at contact sites depends on a balanced ratio of ergosterol to sphingolipids. If a mating pair forms between ergosterol-depleted cells despite the attenuated pheromone response, the subsequent process of membrane fusion is retarded. Prm1 also participates in membrane fusion. However, ergosterol and Prm1 have independent functions and only prm1 mutant mating pairs are susceptible to contact-dependent lysis. In contrast to signaling, plasma membrane fusion is relatively insensitive to sphingolipid depletion. Thus, the sphingolipid-free pool of ergosterol promotes plasma membrane fusion.  相似文献   

20.
The lipid composition of a Saccharomyces cerevisiae mutant (GL 1–38) lacking δ-aminolevulinic acid synthase (EC 2.3.1.37) was investigated. This mutant is unable to synthesize heme compounds and, as a consequence, cannot make unsaturated fatty acids or ergosterol. The mutant cells were grown (i) in medium supplemented with δ-aminolevulinic acid or (ii) in medium supplemented with Tween 80 (as a source of oleate) and ergosterol. After growth in the presence of δ-aminolevulinic acid, the fatty acid composition of total lipids and mitochondrial lipids was the same as that of the corresponding wild-type strain. After growth in the presence of Tween 80 and ergosterol, the mutant cells contained increased levels of oleate and greatly decreased levels of palmitoleate. The ratio of unsaturated to saturated fatty acids in these cells was still close to that of the wild type but much lower than that of the medium. The sphingolipids accounted for 5.2% of the lipid phosphate in the wild type and, after growth in Tween 80 and ergosterol, for 12.7% in the mutant. Changes in other phospholipids were too small to be considered significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号