首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
A family of mammalian protocadherin (Pcdh) proteins is encoded by three closely linked gene clusters (alpha, beta, and gamma). Multiple alpha and gamma Pcdh mRNAs are expressed in distinct patterns in the nervous system and are generated by alternative pre-mRNA splicing between different "variable" exons and three "constant" exons within each cluster. We show that each Pcdh variable exon is preceded by a promoter and that promoter choice determines which variable exon is included in a Pcdh mRNA. In addition, we provide evidence that alternative splicing of variable exons within a gene cluster occurs via a cis-splicing mechanism. However, virtually every variable exon can engage in trans-splicing with constant exons from another cluster, albeit at a far lower level.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Circular splicing has already been described on nuclear pre-mRNA for certain splice sites far apart in the multi exonic ETS-1 gene and in the single 1.2 kb exon of the Sry locus. To date, it is unclear how splice site juxtaposition occurs in normal and circular splicing. The splice site selection of an internal exon is likely to involve pairing between splice sites across that exon. Based on this, we predict that, albeit at low frequency, internal exons yield circular RNA by splicing as an error-prone mechanism of exon juxtaposition or, perhaps more interestingly, as a regulated mechanism on alternative exons. To address this question, the circular exon formation was analyzed at three ETS-1 internal exons (one alternative spliced exon and two constitutive), in human cell line and blood cell samples. Here, we show by RT-PCR and sequencing that exon circular splicing occurs at the three individual exons that we examined. RNase protection experiments suggest that there is no correlation between exon circle expression and exon skipping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号