首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Growth hormone (GH)-inducible suppressors of cytokine signaling (SOCS/CIS proteins) inhibit GH receptor (GHR) signaling to STAT5b via phosphotyrosine-dependent binding interactions with the tyrosine kinase JAK2 (SOCS-1) and/or the cytoplasmic tail of GHR (CIS and SOCS-3). Presently, we investigate the mechanism of CIS inhibition and CIS's role in down-regulating GHR-JAK2 signaling to STAT5b in cells exposed to GH continuously. CIS is shown to inhibit GHR-JAK2 signaling by two distinct mechanisms: by a partial inhibition that is decreased at elevated STAT5b levels and may involve competition between CIS and STAT5b for common GHR cytoplasmic tail phosphotyrosine-binding sites; and by a time-dependent inhibition, not seen with SOCS-1 or SOCS-3, that involves proteasome action. Investigation of the latter mechanism revealed that GH stimulates degradation of CIS, but not SOCS-3. The proteasome inhibitor MG132 blocked this protein degradation and also blocked the inhibitory action of CIS, but not that of SOCS-1 or SOCS-3, on STAT5b signaling. Proteasome-dependent degradation of CIS, most likely in the form of a (GHR-JAK2)-CIS complex, is therefore proposed to be an important step in the time-dependent CIS inhibition mechanism. Finally, the down-regulation of GHR-JAK2 signaling to STAT5b seen in continuous GH-treated cells could be prevented by treatment of cells with the proteasome inhibitor MG132 or by expression of CIS-R107K, a selective, dominant-negative inhibitor of CIS activity. These findings lead us to propose that the cytokine signaling inhibitor CIS is a key mediator of the STAT5b desensitization response seen in cells and tissues exposed to GH chronically, such as adult female rat liver.  相似文献   

5.
Suppressor of cytokine signaling (SOCS)-2 is a member of a family of intracellular proteins implicated in the negative regulation of cytokine signaling. The generation of SOCS-2-deficient mice, which grow to one and a half times the size of their wild-type littermates, suggests that SOCS-2 may attenuate growth hormone (GH) signaling. In vitro studies indicate that, while SOCS-2 can inhibit GH action at low concentrations, at higher concentrations it may potentiate signaling. To determine whether a similar enhancement of signaling is observed in vivo or alternatively whether increased SOCS-2 levels repress growth in vivo, we generated and analyzed transgenic mice that overexpress SOCS-2 from a human ubiquitin C promoter. These mice are not growth-deficient and are, in fact, significantly larger than wild-type mice. The overexpressed SOCS-2 was found to bind to endogenous GH receptors in a number of mouse organs, while phosphopeptide binding studies with recombinant SOCS-2 defined phosphorylated tyrosine 595 on the GH receptor as the site of interaction. Together, the data implicate SOCS-2 as having dual effects on GH signaling in vivo.  相似文献   

6.
7.
8.
9.
SOCS-1 (suppressor of cytokine signaling-1) is a representative of a family of negative regulators of cytokine signaling (SOCS-1 to SOCS-7 and CIS) characterized by a highly conserved C-terminal SOCS box preceded by an SH2 domain. This study comprehensively examined the ability of several SOCS family members to negatively regulate the gp130 signaling pathway. SOCS-1 and SOCS-3 inhibited both interleukin-6 (IL-6)- and leukemia inhibitory factor (LIF)-induced macrophage differentiation of murine monocytic leukemic M1 cells and LIF induction of a Stat3-responsive reporter construct in 293T fibroblasts. Deletion of amino acids 51-78 in the N-terminal region of SOCS-1 prevented inhibition of LIF signaling. The SOCS-1 and SOCS-3 N-terminal regions were functionally interchangeable, but this did not extend to other SOCS family members. Mutation of SH2 domains abrogated the ability of both SOCS-1 and SOCS-3 to inhibit LIF signal transduction. Unlike SOCS-1, SOCS-3 was unable to inhibit JAK kinase activity in vitro, suggesting that SOCS-1 and SOCS-3 act on the JAK-STAT pathway in different ways. Thus, although inhibition of signaling by SOCS-1 and SOCS-3 requires both the SH2 and N-terminal domains, their mechanisms of action appear to be biochemically different.  相似文献   

10.
11.
12.
The suppressor of cytokine signaling (SOCS) group of proteins has been implicated in regulation of various cytokine signaling and in a negative crosstalk between distinct signaling pathways. Interleukin-10 (IL-10) and LPS were known to induce expression of SOCS-3 in neutrophils and monocytes/macrophages. IL-10 was also reported to inhibit a proinflammatory signal-induced NF-kappaB activation in monocytes and peripheral T lymphocytes. The effects of increased SOCS-3 expression upon IL-10 regulation of NF-kappaB activation have not yet been demonstrated. Here we examined the effects of SOCS-3 on NF-kappaB activity. SOCS-3 did not induce any alterations in NF-kappaB activity induced by LPS or TNF-alpha. However, it enhanced RelA-dependent kappaB promoter activity when cotransfected with RelA. Similar results were observed with SOCS-1. In contrast, SOCS-2 did not show any regulatory effects on RelA activity. Analysis of C-terminal truncation mutants of SOCS-1 and SOCS-3 demonstrated that the SOCS box and its N-terminal region, a less well-conserved linker region were important for SOCS-3 activation of RelA. In contrast, the SOCS box itself was critical for SOCS-1 to activate RelA. These results suggest that SOCS proteins can enhance the effects of NF-kappaB/Rel proteins, and therefore, further modulate immune and inflammatory responses.  相似文献   

13.
We report here the role of one of the less studied members of the family of suppressors of cytokine signaling (SOCS), namely SOCS-7, in cytokine signaling. We demonstrate that SOCS-7 inhibits prolactin (PRL), growth hormone (GH), or leptin (LEP) signaling mediated through STAT3 and STAT5 in a dose-dependent manner. SOCS-7 also attenuated STAT3 and STAT5 signaling induced by overexpression of JH1, the catalytic subdomain of JAK2. Since SOCS-7 interacted with phosphorylated STAT3 or STAT5, we assumed that SOCS-7 acts at the level of STAT proteins. Indeed, we showed that SOCS-7 inhibits PRL- and leptin-induced STAT5 and STAT3 phosphorylation and prevented the nuclear translocation of activated STAT3. Taken together, our results indicate that SOCS-7 is a physiological dysregulator of PRL, leptin, and probably also GH signaling and that its mode of action is a novel variation of SOCS protein inhibition of cytokine-inducible STAT-mediated signal transduction.  相似文献   

14.
15.
Suppressor of cytokine signaling (SOCS)-1 protein modulates signaling by IFN-gamma by binding to the autophosphorylation site of JAK2 and by targeting bound JAK2 to the proteosome for degradation. We have developed a small tyrosine kinase inhibitor peptide (Tkip) that is a SOCS-1 mimetic. Tkip is compared in this study with the kinase inhibitory region (KIR) of SOCS-1 for JAK2 recognition, inhibition of kinase activity, and regulation of IFN-gamma-induced biological activity. Tkip and a peptide corresponding to the KIR of SOCS-1, ((53))DTHFRTFRSHSDYRRI((68)) (SOCS1-KIR), both bound similarly to the autophosphorylation site of JAK2, JAK2(1001-1013). The peptides also bound to JAK2 peptide phosphorylated at Tyr(1007), pJAK2(1001-1013). Dose-response competitions suggest that Tkip and SOCS1-KIR similarly recognize the autophosphorylation site of JAK2, but probably not precisely the same way. Although Tkip inhibited JAK2 autophosphorylation as well as IFN-gamma-induced STAT1-alpha phosphorylation, SOCS1-KIR, like SOCS-1, did not inhibit JAK2 autophosphorylation but inhibited STAT1-alpha activation. Both Tkip and SOCS1-KIR inhibited IFN-gamma activation of Raw 264.7 murine macrophages and inhibited Ag-specific splenocyte proliferation. The fact that SOCS1-KIR binds to pJAK2(1001-1013) suggests that the JAK2 peptide could function as an antagonist of SOCS-1. Thus, pJAK2(1001-1013) enhanced suboptimal IFN-gamma activity, blocked SOCS-1-induced inhibition of STAT3 phosphorylation in IL-6-treated cells, enhanced IFN-gamma activation site promoter activity, and enhanced Ag-specific proliferation. Furthermore, SOCS-1 competed with SOCS1-KIR for pJAK2(1001-1013). Thus, the KIR region of SOCS-1 binds directly to the autophosphorylation site of JAK2 and a peptide corresponding to this site can function as an antagonist of SOCS-1.  相似文献   

16.
Negative regulation of FAK signaling by SOCS proteins   总被引:6,自引:0,他引:6       下载免费PDF全文
Liu E  Côté JF  Vuori K 《The EMBO journal》2003,22(19):5036-5046
Focal adhesion kinase (FAK) becomes activated upon integrin-mediated cell adhesion and controls cellular responses to the engagement of integrins, including cell migration and survival. We show here that a coordinated signaling by integrins and growth factor receptors induces expression of suppressor of cytokine signaling-3 (SOCS-3) and subsequent interaction between endogenous FAK and SOCS-3 proteins in 3T3 fibroblasts. Cotransfection studies demonstrated that SOCS-3, and also SOCS-1, interact with FAK in a FAK-Y397-dependent manner, and that both the Src homology 2 (SH2) and the kinase inhibitory region (KIR) domains of the SOCS proteins contribute to FAK binding. SOCS-1 and SOCS-3 were found to inhibit FAK-associated kinase activity in vitro and tyrosine phosphorylation of FAK in cells. The SOCS proteins also promoted polyubiquitination and degradation of FAK in a SOCS box-dependent manner and inhibited FAK-dependent signaling events, such as cell motility on fibronectin. These studies suggest a negative role of SOCS proteins in FAK signaling, and for a previously unidentified regulatory mechanism for FAK function.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号