首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
1. It is increasingly recognised that adequate measures of biodiversity should include information on the ‘relatedness’ of species within ecological assemblages, or the phylogenetic levels at which diversity is expressed. Taxonomic distinctness measures provide a series of indices to achieve this, which are independent of sample size. Taxonomic distinctness has been employed widely in marine systems, where it has been suggested that this index can provide a reliable measure of anthropogenic impact. 2. We tested the behaviour of three related taxonomic distinctiveness indices (Average Taxonomic Distinctness, Δ+; Variation in Taxonomic Distinctness, Λ+; and Total Taxonomic Distinctness, sΔ+) in relation to putative levels of anthropogenic impact in inland waters and their potential utility in environmental monitoring, using an extensive data set for aquatic beetles from the south‐east of the Iberian Peninsula. 3. Taxonomic distinctness measures were not able to identify human disturbance effects and there were no clear relationships between these new biodiversity measures and the disturbance level recorded at individual localities. Furthermore, the taxonomic distinctness measures used were apparently less sensitive to the effects of anthropogenic impact than other diversity metrics, such as species richness and rarity. 4. We conclude that taxonomic distinctness indices may not always perform as well as other metrics in the assessment of environmental quality. In addition, taxonomic distinctness measure should be interpreted with caution, as their performance and ability to detect anthropogenic disturbance may depend on the phylogenetic structure of sampled taxa within a region, and their evolutionary and ecological history.  相似文献   

2.
Environmental filtering and spatial structuring are important ecological processes for the generation and maintenance of biodiversity. However, the relative importance of these ecological drivers for multiple facets of diversity is still poorly understood in highland streams. Here, we examined the responses of three facets of stream macroinvertebrate alpha diversity to local environmental, landscape‐climate and spatial factors in a near‐pristine highland riverine ecosystem. Taxonomic (species richness, Shannon diversity, and evenness), functional (functional richness, evenness, divergence, and Rao's Quadratic entropy), and a proxy of phylogenetic alpha diversity (taxonomic distinctness and variation in taxonomic distinctness) were calculated for macroinvertebrate assemblages in 55 stream sites. Then Pearson correlation coefficient was used to explore congruence of indices within and across the three diversity facets. Finally, multiple linear regression models and variation partitioning were employed to identify the relative importance of different ecological drivers of biodiversity. We found most correlations between the diversity indices within the same facet, and between functional richness and species richness were relatively strong. The two phylogenetic diversity indices were quite independent from taxonomic diversity but correlated with functional diversity indices to some extent. Taxonomic and functional diversity were more strongly determined by environmental variables, while phylogenetic diversity was better explained by spatial factors. In terms of environmental variables, habitat‐scale variables describing habitat complexity and water physical features played the primary role in determining the diversity patterns of all three facets, whereas landscape factors appeared less influential. Our findings indicated that both environmental and spatial factors are important ecological drivers for biodiversity patterns of macroinvertebrates in Tibetan streams, although their relative importance was contingent on different facets of diversity. Such findings verified the complementary roles of taxonomic, functional and phylogenetic diversity, and highlighted the importance of comprehensively considering multiple ecological drivers for different facets of diversity in biodiversity assessment.  相似文献   

3.
Marine fish species checklists from six Chinese coastal waters were combined for the analysis of taxonomic diversity. The Genus-Family index (G-F index) ranged between 0.39 and 0.84, which generally indicated a decreasing trend with increasing latitude, with the exception of the southernmost area. Average taxonomic distinctness showed a slight increasing trend from northern to central study areas, but whether the taxonomic distinctness indices represent a latitudinal gradient of biodiversity requires further study. The multivariate analysis revealed a distinct latitudinal variation in fish assemblages. These results indicate that species checklist data are helpful in understanding the diversity distribution of fish species in the coastal zone. The potential of a species inventory should be exploited to fully understand biodiversity.  相似文献   

4.
1. A variety of species richness measures have been used to assess the effects of environmental degradation on biodiversity. Such measures can be highly influenced by sample size, sampling effort, habitat type or complexity, however, and typically do not show monotonic responses to human impact. In addition to being independent of the degree of sampling effort involved in data acquisition, effective measures of biodiversity should reflect the degree of taxonomical relatedness among species within ecological assemblages and provide a basis for understanding observed diversity for a particular habitat type. Taxonomic diversity or distinctness indices emphasize the average taxonomic relatedness (i.e. degree of taxonomical closeness) between species in a community. 2. Eutrophication of freshwater ecosystems, mainly due to the increased availability of nutrients, notably phosphorus, has become a major environmental problem. Two measures of taxonomic distinctness (Average Taxonomic Distinctness and Variation in Taxonomic Distinctness) were applied to surface sediment diatoms from 45 lakes across the island of Ireland to examine whether taxonomic distinctness and nutrient enrichment were significantly related at a regional scale. The lakes span a range of concentrations of epilimnic total phosphorus (TP) and were grouped into six different types, based on depth and alkalinity levels, and three different categories according to trophic state (ultra‐oligotrophic and oligotrophic; mesotrophic; and eutrophic and hyper‐eutrophic). 3. The taxonomic distinctness measures revealed significant differences among lakes in the three different classes of trophic state, with nutrient‐rich lakes generally more taxonomically diverse than nutrient‐poor lakes. This implies that enrichment of oligotrophic lakes does not necessarily lead to a reduction in taxonomic diversity, at least as expressed by the indices used here. Furthermore, taxonomic distinctness was highly variable across the six different lake types regardless of nutrient level. 4. Results indicate that habitat availability and physical structure within the study lakes also exert a strong influence on the pattern of taxonomic diversity. Overall the results highlight problems with the use of taxonomic diversity measures for detecting impacts of freshwater eutrophication based on diatom assemblages.  相似文献   

5.
Tropical stream ecosystems in montane forest watersheds are important centers of endemism and diversity and provide essential ecosystem services. These habitats are subject to a variety of stressors, including the conversion of adjacent terrestrial habitats from forest to agriculture, but the impacts of these anthropogenic effects are largely unknown because of the paucity of studies in these systems. In montane habitats in the wet tropics, large-scale cultivation of tea is common and can represent an important source of income at local and national scales. However, little is known about how tea cultivation impacts adjacent stream ecosystems. In this study, we examine stream macroinvertebrate assemblages in a biodiversity hotspot the East Usambara Mountains, Tanzania. Specifically, we compare diversity of macroinvertebrate assemblages found on cobbles in stream riffles in watersheds dominated by forest with those surrounded by tea cultivation. We found that streams surrounded by tea were characterized by significantly lower dissolved oxygen and had lower total estimated species richness and number of families. Furthermore, the richness of invertebrate taxa known to be sensitive to anthropogenic disturbance were substantially reduced in tea streams and general assemblage-level analysis shows significant differences in the composition of macroinvertebrate assemblages between tea and forested streams. Our results suggest that tea cultivation may reduce stream habitat quality and biodiversity in the East Usambaras. Further research is needed to evaluate the effects of tea cultivation on streams over longer times scales and to address methods for minimizing negative effects of agriculture on montane stream communities.  相似文献   

6.
Macrophytes are a structurally and functionally essential element of stream ecosystems and therefore indispensable in assessment, protection and restoration of streams. Modelling based on continuous environmental gradients offers a potential approach to predict natural variability of communities and thereby improve detection of anthropogenic community change. Using data from minimally disturbed streams, we described natural macrophyte assemblages in pool and riffle habitats separately and in combination, and explored their variation across large scale environmental gradients. Specifically, we developed RIVPACS-type models to predict the presence and abundance of macrophyte taxa at stream sites in the absence of human influence and, used data from impacted streams to explore the responses of three biotic indices to anthropogenic stress. The indices used, taxonomic completeness (O/E-taxa), a measure of compositional dissimilarity (BC-index) and an index taking into account the abundance of species (AB-index), are based on predicted and observed macrophyte communities. We found that size of the catchment area, altitude, latitude and percentage of lakes in the catchment were the large scale environmental variables that best predicted the natural variation of assemblages. The RIVPACS approach substantially improved both the precision and accuracy to predict the natural communities and the sensitivity to human disturbance. O/E-taxa performed best in relation to the null model decreasing the variation by 20% in pools, 29% in riffles and 32% in combined data. In general, models based on the riffle assemblages performed better than models based on pool assemblages, but including both habitats and predicting abundances instead of only presence/absence yielded the greatest accuracy and sensitivity. Our results support the use of multivariate modelling techniques in predicting reference condition to assess status of stream macrophyte communities.  相似文献   

7.
The introduction of exotic species and the extirpation of native species that occurred during the past two centuries have strongly modified the structure of most plant and animal assemblages across the globe. Such a biotic change is particularly marked in isolated environments such as islands or isolated lakes. Most studies reported drastic changes between before and after human disturbances, but the dynamics of change in assemblage structure through the invasion and extirpation processes are rarely reported. Here we measured the aquatic ecosystem degradation through exotic species introduction and native species extirpation experienced by Lake Erhai (China) during the last 50 years using structural, functional and taxonomic distinctness biodiversity indices. Structural diversity (species richness) did not varied monotonically along the temporal gradient, due to an opposite trend between exotic species increase and a concomitant decline of native species richness. Functional diversity displayed unclear ascending trends driven by the introduction of exotic species having distinct functional traits than natives. Taxonomic distinctness indices exhibited an increase of the average taxonomic distinctness (Δ+), but a decrease of the variation in taxonomic distinctness (Λ+) through time. Structural, functional and distinctness indices providing complementary information on ecosystem degradation, we here proposed a new multifaceted degradation index integrating these three facets of biodiversity. Such an index provided an accurate representation of the faunistic changes experienced by Lake Erhai and might constitute a comprehensive way to measure ecosystem degradation through exotic fish species introductions and native fish species extirpations.  相似文献   

8.
Floodplain waterbodies and their biodiversity are increasingly threatened by human activities. Given the limited resources available to protect them, methods to identify the most valuable areas for biodiversity conservation are urgently needed. In this study, we used freshwater fish assemblages in floodplain waterbodies to propose an innovative method for selecting priority areas based on four aspects of their diversity: taxonomic (i.e. according to species classification), functional (i.e. relationship between species and ecosystem processes), natural heritage (i.e. species threat level), and socio-economic (i.e. species interest to anglers and fishermen) diversity. To quantitatively evaluate those aspects, we selected nine indices derived either from metrics computed at the species level and then combined for each assemblage (species rarity, origin, biodiversity conservation concern, functional uniqueness, functional originality, fishing interest), or from metrics directly computed at the assemblage level (species richness, assemblage rarity, diversity of biological traits). Each of these indices belongs to one of the four aspects of diversity. A synthetic index defined as the sum of the standardized aspects of diversity was used to assess the multi-faceted diversity of fish assemblages. We also investigated whether the two main environmental gradients at the catchment (distance from the sea) and at the floodplain (lateral connectivity of the waterbodies) scales influenced the diversity of fish assemblages, and consequently their potential conservation value. Finally, we propose that the floodplain waterbodies that should be conserved as a priority are those located in the downstream part of the catchment and which have a substantial lateral connectivity with the main channel.  相似文献   

9.
Taxonomic distinctness indices are a family of anthropogenic stress indicators that have been used widely in marine ecosystems; however, their utility in freshwater ecosystems is still unclear. We used two taxonomic distinctness indices and species richness to assess relationships between nutrient gradients and three freshwater taxonomic groups, including diatoms, macrophytes and invertebrates. We found that the indices based on the three organismal groups showed generally rather clear relationships with the nutrient levels, indicating that these indices may bring useful additional information for the purposes of bioassessment. However, the two indices describing taxonomic distinctness showed opposite patterns in relation to nutrient levels. The indices for the three groups of organisms were generally poorly correlated with each other, showing that different organismal groups react differently to anthropogenic stress. Accordingly, taxonomic distinctness indices likely tell us about various aspects of nutrient enrichment of freshwater ecosystems. Our findings also emphasized that the value of these indices may be largely dependent on the organismal group used.  相似文献   

10.
Studies focusing on the effects of spatial processes versus environmental filtering on aquatic metacommunities have so far been focused almost entirely on relatively isolated systems, such as sets of different lakes or streams. In contrast, metacommunity patterns and underlying processes within a single aquatic system have received less attention. In this study, we aimed to examine how strongly variations in different diversity indices are affected by spatial processes (dispersal) versus local environmental conditions (species sorting) within a large lake system. Modern biodiversity research focuses on multiple diversity facets because different indices may be uncorrelated within and between facets, and they may thus describe different phenomena. We investigated the relationship of littoral macroinvertebrate diversity with environmental and spatial factors using 10 indices of species, functional and taxonomic diversity. Using spatial factors as proxies of dispersal, we decomposed variation in diversity indices into fractions attributable to environmental and spatial factors. Our results highlighted generally equal or higher importance of spatial processes in controlling the variation in diversity indices when compared to local environmental variables. Local environmental conditions accounted for higher proportion of variation only in a single index (i.e. taxonomic diversity). These findings suggest that the effects of high dispersal rates (mass effects) may override the influences of local environmental conditions (species sorting) on the diversity in highly‐connected aquatic system, such as large lakes and marine coastal systems. Our results further suggest that biodiversity assessment and environmental monitoring in highly‐connected systems cannot rely solely on the idea of environmental control. We hence recommend that the roles of both environmental and spatial processes should be integrated in basic and applied ecological research of aquatic systems.  相似文献   

11.
Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.  相似文献   

12.
1. New techniques for identifying the average taxonomic range of species assemblages were applied to an extensive dataset of bottom-dwelling fish in the coastal waters of NW Europe. These taxonomic distinctness indices provided much greater resolution than traditional diversity indices as they incorporated information on taxonomic relationships into an index which measures species dominance. Unlike standard measures of species richness and diversity, the mean value of these statistics is independent of sampling effort, and this allows objective comparisons to be made between samples from studies where sampling effort is not standardized.
2. A reduction in the average taxonomic range between the fauna of western waters of the UK and that of the southern North Sea was consistent with the general decline in species richness observed between these regions, and suggests that these two factors may be spatially positively correlated. Indices calculated for individual samples of fish on a local scale, however, did not all fit this trend.
3. Much of the variability in taxonomic diversity within the coastal waters of NW Europe was caused by the variable geographical distribution of the elasmobranchs. Of all the families which comprise the fish communities, this group has life-history characteristics which make it most susceptible to impact by commercial trawl fisheries.
4. The use of taxonomic distinctness measures provided additional insights, of relevance to biodiversity assessment, suggesting that they might usefully be applied to other aquatic and terrestrial fauna.  相似文献   

13.
Most traditional "biodiversity" indices have an uncertain ecological interpretation, unfavourable sampling properties, and excessive data requirements. A new index of taxonomic distinctness (the average evolutionary distance between species in an assemblage) has many advantages over traditional measures, but its ecological interpretation remains unclear. We used published behavioural species data in conjunction with bird atlas data to quantify simple functional metrics (the fraction of species engaged in non-competitive interactions, and the average between-species disparity in habitat preferences) for breeding-bird assemblages in Europe and North America. We then analysed correlations of functional metrics with taxonomic distinctness and species richness, respectively. All functional metrics had weak, positive correlations with species richness. In contrast, correlations between functional metrics and taxonomic distinctness ranged from slightly negative to strongly positive, depending on the relative habitat heterogeneity, and on the resource involved in the between-species interaction. Strong positive correlations between taxonomic distinctness and the fraction of interactive species occurred for resources with few producer species per consumer species, and we suggest that taxonomic distinctness is consistently correlated with conservation worth. With its favourable sampling properties and data requirements, this taxonomic distinctness measure is a promising tool for biodiversity research and for environmental monitoring and management.  相似文献   

14.
Despite the fundamental dependence of human populations on water resources, a range of anthropogenic impacts, in particular the removal of riparian vegetation, threaten freshwater environments. One of the most effective means of evaluating the effects of anthropogenic disturbance in aquatic ecosystems is the use of bioindicators, and the insects of the order Odonata are among the most efficient indicators, due to their enormous sensitivity to environmental changes. In this context, the present study aimed to verify which parameters of the odonate community (species richness, abundance/biomass, composition, taxonomic diversity and taxonomic/phylogenetic distinctness) are most effective for the evaluation of the loss of environmental integrity. The study focused on 50 streams in the northeast of the Brazilian state of Pará. The streams were sampled during the dry season, between June and August 2011. The physical characteristics of each stream were evaluated using a Habitat Integrity Index (HII). The species composition provided the best parameter for the evaluation of ecological integrity, providing a relatively accurate assessment at a lower mean research cost than other parameters. Taxonomic diversity and distinctness also provided relatively reliable results, contributed additional information on the evolutionary relationships among the odonate taxa, and also provided a low-cost approach. Deconstructing communities is necessary to detect impacts, considering the considerable variation in the environmental requirements of the different species. Overall, the parameter that best responded to gradients of disturbance was species composition, followed by diversity and taxonomic distinctness. Given these findings, odonate-based biomonitoring should focus on these parameters to guarantee the optimal detection and evaluation of habitat alterations.  相似文献   

15.
Taxonomic diversity indices have a number of desirable properties as indicators in the assessment of environmental quality, and have become an important measure in biodiversity studies. Macrobenthic taxonomic variations were studied in Bohai Bay, northern China, an area under threat from rapid human development. Four seasonal cruise datasets were collected between 2006 and 2007. Environmental conditions exhibited large fluctuations due to human development; nitrogen and phosphorus were the main environmental stressors. A total of 97 macrofauna taxa were identified belonging to 88 genera, 72 families, 36 orders, 14 classes, and nine phyla. Analysis of similarity indicated that there were significant assemblage differences across sampling stations as well as seasons. Four taxonomic indices, taxonomic diversity (Δ), taxonomic distinctness (Δ*), average taxonomic distinctness (Δ+), and variation in taxonomic distinctness (Λ+) were calculated using abundance data. Among the stations and seasons, there were greater variations in both Δ and Λ+ than in Δ* and Δ+. The funnel plot of Δ+ could identify disturbed stations to some extent, but was not always a strong indicator of disturbance. The Δ+ performance was better in autumn than in spring, but could not identify a disturbed station in autumn due to a low number of species. The efficiency of taxonomic distinctness may depend on taxa or the pollution indicators. Taxonomic distinctness indices can be effective at assessing environmental degradation when correctly applied; however, they are unsuitable for directly assessing environmental quality in a new area prior to efficiency testing.  相似文献   

16.
研究基于2010年4月、7月和2018年8月、2019年5月在鄱阳湖9个区域的鱼类多样性调查数据,分析鱼类物种多样性、功能多样性和分类差异指数的时空变化以及其与环境之间的关系,了解鄱阳湖近十年来鱼类群落多样性的时空变化特征。结果显示, 2010年和2018—2019年分别调查到鱼类74种和93种,群落结构差异显著(P<0.05),差异贡献率最高的物种为短颌鲚、似鳊、鲫、光泽黄颡鱼和鲤;水温、总悬浮物和叶绿素等环境因素具有显著的年际和季节差异(P<0.05)。与2010年相比, 2018—2019年鱼类物种多样性和功能多样性指数有一定增加,分类差异指数没有显著变化。分类差异指数的随机检验显示(Randomization test),与2010年相比, 2018—2019年位于95%概率置信范围下方的区域增加。水温、总悬浮物和叶绿素等环境因素对物种多样性、功能多样性和分类差异指数有显著的影响(P<0.05)。结果表明,近十年来,鄱阳湖鱼类群落结构发生明显改变,但是小型鱼类依旧是优势种,鱼类群落小型化明显,主要原因可能是过度捕捞的影响。同时,鄱阳湖的人类活动干扰增大,鄱阳县...  相似文献   

17.
基于1950s以来的长江中下游湖泊鱼类调查数据,分析通江湖泊与阻隔湖泊的鱼类分类多样性差异,以及通江和阻隔湖泊鱼类分类多样性的时间序列变化,探讨江湖阻隔对鱼类多样性的影响。结果显示,阻隔湖泊鱼类物种数、平均分类差异指数(Δ+)和分类差异变异指数(Λ+)平均值分别为48.47±14.64、74.02±3.09和736.89±33.80;通江湖泊为76.22±14.40、78.31±0.98和697.31±25.53。阻隔湖泊物种数和Δ+值显著低于通江湖泊(P<0.001),而阻隔湖泊Λ+值显著高于通江湖泊(P=0.002),表明阻隔湖泊物种间亲缘关系更近,均匀度下降,即物种分类单元减少,且集中分布于某几个分类阶元,稳定性变差。典型通江与阻隔湖泊鱼类群落分类多样性的时间变化分析发现,两种类型湖泊的鱼类物种数和Δ+值均随时间推移整体呈现下降趋势,Λ+值整体呈现升高趋势;并且阻隔湖泊的Λ+值随阻隔时间增加而大幅上升,Δ+和Λ+...  相似文献   

18.
Aquatic biodiversity faces increasing threats from climate change, escalating exploitation of water and land use intensification. Loss of vegetation in catchments (= watersheds) has been identified as a substantial problem for many river basins, and there is an urgent need to better understand how climate change may interact with changes in catchment vegetation to influence the ecological condition of freshwater ecosystems. We used 20 years of biological monitoring data from Victoria, southeastern Australia, to explore the influences of catchment vegetation and climate on stream macroinvertebrate assemblages. Southeastern Australia experienced a severe drought from 1997 to 2009, with reductions of stream flows >50% in some areas. The prolonged drying substantially altered macroinvertebrate assemblages, with reduced prevalence of many flow‐dependent taxa and increased prevalence of taxa that are tolerant of low‐flow conditions and poor water quality. Stream condition, as assessed by several commonly used macroinvertebrate indices, was consistently better in reaches with extensive native tree cover in upstream catchments. Prolonged drought apparently caused similar absolute declines in macroinvertebrate condition indices regardless of vegetation cover, but streams with intact catchment and riparian vegetation started in better condition and remained so throughout the drought. The largest positive effects of catchment tree cover on both water quality and macroinvertebrate assemblages occurred above a threshold of ca. 60% areal tree cover in upstream catchments and in higher rainfall areas. Riparian tree cover also had positive effects on macroinvertebrate assemblages, especially in warmer catchments. Our results suggest that the benefits of extensive tree cover via improved water quality and in‐channel habitat persist during drought and show the potential for vegetation management to reduce negative impacts of climatic extremes for aquatic ecosystems.  相似文献   

19.
1. The impacts of anthropogenic surface water acidification are much better known than those of natural acidity. Recent studies have indicated biodiversity is not degraded and species composition unaltered in naturally acidic compared to circumneutral watercourses.
2. Here, we use a geographically extensive dataset comprising sites in more than 200 Swedish streams to test whether the lack of effects on macroinvertebrate species diversity is due to exaptation and adaptation to natural acidity.
3. To this end, we modelled pH associated with spring flood episodes, which inflict the most challenging hydrochemical conditions to the biota. We compared taxonomic richness and species composition along the modelled pH gradient in northern Sweden, where acidity is largely natural, with southern Sweden, a region influenced by significant anthropogenic acidification.
4. We found Plecoptera richness did not respond to varying pH either in northern or southern Sweden. Ephemeroptera richness was sensitive to pH in both regions, while that of Trichoptera increased with increasing pH in southern Sweden, but decreased in the north. The taxonomic composition of Plecoptera changed along the pH gradient in both regions, whereas that of Ephemeroptera and Trichoptera changed more strongly with pH in southern Sweden.
5. Our results support the hypothesis that stream invertebrates are able to tolerate low pH through exaptation or adaptation, but that this capability varies among taxonomic groups.  相似文献   

20.
The macroinvertebrate species and assemblages of headwater streams of the River Tyne catchment in northern England were classified and their relationship with environmental variables based on stream structure, water acidity, distance from source and land cover investigated using constrained ordination and logistic regression. Fuzzy classification of data from 322 stream sites generated five assemblages. Stream structure, quantified as an exposure index, was found to be the most important environmental variable, with water acidity also important. Distance from source and land cover had less influence on species and assemblage distribution. A considerable amount of variation in assemblage distribution was explained using a two-variable logistic regression with stream structure (exposure index) and water acidity (pH) in a template. Site structure and water acidity appeared to be related to drift, geology and topography with little anthropogenic influence. The applicability of the habitat template concept for explaining the distribution of stream macroinvertebrates is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号