首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Peroxisome proliferator-activated receptor gamma (PPARgamma) has been proposed as a therapeutic target for neurodegenerative diseases because of its anti-inflammatory action in glial cells. However, PPARgamma agonists preventbeta-amyloid (Abeta)-induced neurodegeneration in hippocampal neurons, and PPARgamma is activated by the nerve growth factor (NGF) survival pathway, suggesting a neuroprotective anti-inflammatory independent action. Here we show that the PPARgamma agonist rosiglitazone (RGZ) protects hippocampal and dorsal root ganglion neurons against Abeta-induced mitochondrial damage and NGF deprivation-induced apoptosis, respectively, and promotes PC12 cell survival. In neurons and in PC12 cells RGZ protective effects are associated with increased expression of the Bcl-2 anti-apoptotic protein. NGF-differentiated PC12 neuronal cells constitutively overexpressing PPARgamma are resistant to Abeta-induced apoptosis and morphological changes and show functionally intact mitochondria and no increase in reactive oxygen species when challenged with up to 50 microM H2O2. Conversely, cells expressing a dominant negative mutant of PPARgamma show increased Abeta-induced apoptosis and disruption of neuronal-like morphology and are highly sensitive to oxidative stress-induced impairment of mitochondrial function. Cells overexpressing PPARgamma present a 4- to 5-fold increase in Bcl-2 protein content, whereas in dominant negative PPARgamma-expressing cells, Bcl-2 is barely detected. Bcl-2 knockdown by small interfering RNA in cells overexpressing PPARgamma results in increased sensitivity to Abeta and oxidative stress, further suggesting that Bcl-2 up-regulation mediates PPARgamma protective effects. PPARgamma prosurvival action is independent of the signal-regulated MAPK or the Akt prosurvival pathways. Altogether, these data suggest that PPARgamma supports survival in neurons in part through a mechanism involving increased expression of Bcl-2.  相似文献   

4.
Ergothioneine rescues PC12 cells from beta-amyloid-induced apoptotic death   总被引:3,自引:0,他引:3  
Beta-amyloid (Abeta) peptide is the major component of senile plaques and considered to have a causal role in the development and progression of Alzheimer's disease. There has been compelling evidence that Abeta-induced cytotoxicity is mediated through oxidative and/or nitrosative stress. Recently, considerable attention has been focused on dietary manipulation of oxidative and/or nitrosative damage. l-Ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine) is a low-molecular-weight naturally occurring thiol compound of dietary origin that exists in the brain, liver, kidney, erythrocytes, ocular tissues, and seminal fluids of mammals. This water-soluble antioxidant has the ability to scavenge hydroxyl and peroxynitrite radicals as well as activated oxygen species, such as singlet oxygen. In this study, we investigated the effects of EGT on Abeta-induced oxidative and/or nitrosative cell death. Rat pheochromocytoma (PC12) cells treated with Abeta underwent apoptotic death as determined by positive in situ terminal end-labeling (TUNEL staining), decreased mitochondrial transmembrane potential, increased ratio of proapoptotic Bax to antiapoptotic Bcl-XL, elevated caspase-3 activity, and cleavage of poly(ADP-ribose) polymerase. EGT pretreatment attenuated Abeta-induced apoptosis in PC12 cells. Compared to N-acetyl-l-cysteine, which mainly scavenges reactive oxygen species, EGT effectively inhibited Abeta-induced cell death by suppressing peroxynitrite formation and subsequent nitration of protein tyrosine residues. The effects of EGT on the cytotoxicity induced by the nitric oxide donor sodium nitroprusside (SNP) and the peroxynitrite-generating 3-morpholinosydnonimine chlorhydrate (SIN-1) were compared. Whereas EGT significantly protected against SIN-1-mediated cell death, it barely affected the cytotoxicity induced by SNP. Thus EGT may attenuate apoptosis caused by Abeta, preferentially by eliminating peroxynitrite derived from the neurotoxic peptide. The importance of diet-derived antioxidants in the management of Alzheimer's disease and other neurodegenerative disorders is discussed.  相似文献   

5.
Amyloid beta protein (Abeta) increases free radical production and lipid peroxidation in PC12 nerve cells, leading to apoptosis and cell death. The effect of ursolic acid from Origanum majorana L. on Abeta-induced neurotoxicity was investigated using PC12 cells. Pretreatment with isolated ursolic acid and vitamin E prevented the PC12 cell from reactive oxygen species (ROS) toxicity that is mediated by Abeta. The ursolic acid resulted in decreased Abeta toxicity assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and trypan blue assay. Thus, treatment with these antioxidants inhibited the Abeta-induced neurotoxic effect. Therefore, these results indicate that micromolar Abeta-induced oxidative cell death is reduced by ursolic acid from Origanum majorana L.  相似文献   

6.
beta-Amyloid protein (Abeta), a major protein component of brain senile plaques in Alzheimer's disease, is known to be directly responsible for the production of reactive oxygen species (ROS) and induction of apoptosis. In this study, the protective effect of puerarin, an isoflavone purified from the radix of the Chinese herb Pueraria lobata, on Abeta-induced rat pheochromocytoma (PC12) cultures was investigated. Although exposure of PC12 cells to 50 microM Abeta25-35 caused significant viability loss and apoptotic rate increase, pretreatment of the cells with puerarin for 24h reduced the viability loss and apoptotic rate. Puerarin (1 microM) significantly inhibited Abeta25-35-induced apoptosis of PC12 cells. Preincubation of the cell with puerarin also restored the ROS and mitochondrial membrane potential levels that had been altered as a result of Abeta25-35 treatment. Puerarin was also found to increase the Bcl-2/Bax ratio and reduce caspase-3 activation. These results suggest that puerarin could attenuate Abeta25-35-induced PC12 cell injure and apoptosis and could also promote the survival of PC12 cells. Therefore, puerarin may act as an intracellular ROS scavenger, and its antioxidant properties may protect against Abeta25-35-induced cell injury.  相似文献   

7.
Dopamine-Induced Apoptosis Is Inhibited in PC12 Cells Expressing Bcl-2   总被引:5,自引:0,他引:5  
1. Degeneration of nigrostriatal dopaminergic neurons is the major pathogenic substrate of Parkinson's disease (PD). It is assumed that the lethal trigger is the accumulation of oxidative reactive species generated during metabolism of the natural neurotransmitter dopamine.2. We have recently shown that dopamine is capable of inducing programmed cell death (PCD) or apoptosis in cultured postmitotic chick sympathetic neurons and rat PC12 pheochromocytoma cells.3. The bcl-2 gene encodes a protein which blocks physiological PCD in many mammalian cells. In an attempt to elucidate further the mechanism of dopamine toxicity, we examined the potential protective effect of bcl-2 in PC12 cells which were transfected with the protooncogene.4. In our experiments, Bcl-2 producing cells showed a marked resistance to dopamine toxicity. The percentage of nuclear condensation and DNA fragmentation visualized by the end-labeling method following dopamine treatment was significantly lower in bcl-2 expressing cells. Bcl-2 did not protect PC12 cells against toxicity induced by exposure to dopamine-melanin. Extracts of PC12 cells containing Bcl-2 inhibited dopamine autooxidation and formation of dopamine-melanin. Furthermore, the presence of Bcl-2 protected cells from thiol imbalance and prevented thiol loss following exposure to dopamine.5. The protective effects of Bcl-2 against dopamine toxicity may be explained, in part, by its action as an antioxidant and by its interference in the production of toxic agents. The possible protection by Bcl-2 against neuronal degeneration caused by dopamine may play a role in the pathogenesis of PD andmay provide a new direction for the development of neuroprotective therapies.  相似文献   

8.
The functions of the antiapoptotic proteins Bcl-2 and Bcl-xL were examined in glioblastoma cells. Expression of both Bcl-2 and Bcl-xL were found to be elevated in protein lysates from seven early passage cell lines derived from human glioblastoma tumors compared with non-neoplastic glial cells. Down-regulation of both bcl-2 and bcl-xL expression in glioblastoma cell lines U87 and NS008 with bcl-2/bcl-xL bispecific antisense oligonucleotide resulted in spontaneous cell death. The mechanism of cell death was partially caspase-dependent. Executioner caspase 6 and caspase 7, but not caspase 3, were involved in apoptosis induced by bcl-2/bcl-xL antisense treatment. Interestingly, western blots failed to demonstrate expression of caspase 3 in two of the seven glioblastoma cell lines examined. The data support the hypothesis that Bcl-2 and Bcl-xL are important in preventing cell death in glioblastoma cells. It also suggests that there are functional pathways capable of successful completion of caspase-dependent cell death in gliomas. These findings support a potential role of bcl-2/bcl-xL bispecifc antisense oligonucleotide therapy as a treatment strategy to enhance caspase-dependent cell death in patients with glioblastoma.  相似文献   

9.
梓醇对氧糖剥夺诱导PC1 2 细胞凋亡的保护作用   总被引:1,自引:0,他引:1       下载免费PDF全文
目的:观察梓醇对氧糖剥夺(OGD)诱导PC12细胞凋亡的保护作用。方法:采用Hoechst 33258 DNA染色法,四甲基偶氮唑盐(MTT)检测细胞活性;化学比色法测定乳酸脱氢酶(LDH)的释放量,用流式细胞技术检测细胞凋亡比例以及P53和Bcl-2蛋白。结果:OGD可导致PC12细胞活力明显下降,LDH释放量增加、P53蛋白表达上升,Bcl-2蛋白表达下降。梓醇可明显改善细胞形态结构,显著降低LDH释放量、降低P53蛋白的表达,提高Bcl-2蛋白的表达,降低细胞凋亡率。结论:梓醇通过调节细胞凋亡相关基因的表达而抑制细胞凋亡。  相似文献   

10.
Lee WS  Tsai WJ  Yeh PH  Wei BL  Chiou WF 《Life sciences》2006,78(11):1268-1275
We attempted to clarify the role of Ca2+ in cell death caused by beta-amyloid protein (Abeta) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in SK-N-SH neuroblastoma, respectively. Two insults both reduced cell viability in a concentration-dependent manner and induced equal cytotoxicity in the presence of 20 microM Abeta and 0.4 mM MPTP for 72 h, respectively (68+/-7 vs. 64+/-6% viability). Time-related study showed that Abeta evoked cell death occurred quickly at 24 h. Relatively, MPTP exhibited a delayed cell death significantly after 72 h of culture. Pretreating the cells with nimodipine and chelating of Ca2+ by EGTA plus 1,2-bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) successfully rescued Abeta-induced cell death but failed to prevent MPTP toxicity. ELISA determination of mono/oligonucleosomes accumulation showed the mode of cell death evoked by MPTP was presumably apoptosis while by Abeta was necrosis. SK-N-SH cells constitutively expressed the alpha(1C) subunit of L-type Ca2+ channel and exposure to Abeta or MPTP for 96 h did not further modify its expression. By contrast, alpha(1D) subunit was undetectable or low level expressed in basal condition, but was induced to express after Abeta and MPTP stimulation in a time-dependent manner. Functional assay revealed that KCl-evoked [Ca2+]i rise was significantly greater in Abeta-, but not in MPTP-treated cells when compared with control. Taken together, these results showed that Abeta and MPTP elicited different mode of cell death in SK-N-SH. Nevertheless, Ca2+ overload seems to solely display a crucial role in Abeta-induced cytotoxicity and over-expressed alpha(1D) may contribute to the disruption of cellular Ca2+ homeostasis.  相似文献   

11.
12.
13.
Inhibition of Drug-Induced Apoptosis by Survival Factors in PC12 Cells   总被引:2,自引:0,他引:2  
Abstract: Pheochromocytoma (PC12) cells have been shown to undergo apoptosis (programmed cell death) when deprived of serum and to be rescued by nerve growth factor, fibroblast growth factor, dibutyryl cyclic AMP, aurintricarboxylic acid, or exogenous expression of bcl-2 . We show here that the cytotoxic drugs cycloheximide, actinomycin D, colchicine, and EGTA also induce apoptosis in PC12 cells. These findings prompted us to investigate whether apoptosis induced by these drugs involves similar pathways in each case, and whether the factors preventing the apoptotic death of serum-deprived PC12 cells can also protect the cells from apoptosis induced by the cytotoxic drugs. Nerve growth factor, dibutyryl cyclic AMP, and expression of bcl-2 inhibited apoptosis induced by all four cytotoxic drugs. Fibroblast growth factor inhibited apoptosis induced by EGTA or colchicine. Aurintricarboxylic acid inhibited apoptosis induced by EGTA. These results suggest that apoptosis induced by treatments with the various drugs is mediated by different initiating pathways, all of which converge into a final, common pathway. Nerve growth factor, dibutyryl cyclic AMP, and bcl-2 appear to affect the final common pathway, whereas fibroblast growth factor and aurincarboxylic acid appear to be more specific and affect only some of the pathways.  相似文献   

14.
Survival and differentiation of PC12 cells depend on the proper balance between the activities of several mitogen-activated protein kinase (MAPK) pathways. We have previously shown that low, nontoxic doses of anisomycin stimulated these MAPKs as well as the expression of several early-response genes and inhibited NGF-induced neurite formation. In the present work we show that protein synthesis-inhibiting concentrations of anisomycin, in contrast, cause apoptosis of PC12 cells. To try to characterize the apoptosis-inducing mechanisms of anisomycin we compared the signaling effects of subinhibitory and inhibitory drug concentrations. Anisomycin in a nontoxic dosis activates the same MAPK pathways and early-response genes as in protein synthesis inhibiting concentrations. In contrast, while the subinhibitory anisomycin treatment stimulates Akt and induces Bcl-2, two antiapoptotic proteins, the translation-inhibiting concentration of the drug prevents these survival-promoting biochemical events. Anisomycin thus triggers both pro- and antiapoptotic processes in PC12 cells; stimulation of stress-responsive MAPK cascades is not sufficient to mediate apoptotic signaling: the inhibition of key antiapoptotic proteins appears to be more important for PC12 cell death by anisomycin treatment.  相似文献   

15.
The role of gene expression in neuronal apoptosis may be cell- and apoptotic stimulus-specific. Previously, we and others showed that amyloid beta (Abeta)-induced neuronal apoptosis is accompanied by c-jun induction. Moreover, c-Jun contributes to neuronal death in several apoptosis paradigms involving survival factor withdrawal. To evaluate the role of c-Jun in Abeta toxicity, we compared Abeta-induced apoptosis in neurons from murine fetal littermates that were deficient or wild-type with respect to c-Jun. We report that neurons deficient for c-jun are relatively resistant to Abeta toxicity, suggesting that c-Jun contributes to apoptosis in this model. When changes in gene expression were quantified in neurons treated in parallel, we found that Abeta treatment surprisingly led to an apparent activation of the c-jun promoter in both the c-jun-deficient and wild-type neurons, suggesting that c-Jun is not necessary for activation of the c-jun promoter. Indeed, several genes induced by Abeta in wild-type neurons were also induced in c-jun-deficient neurons, including c-fos, fosB, ngfi-B, and ikappaB. In summary, these results indicate that c-Jun contributes to Abeta-induced neuronal death but that c-Jun is not necessary for c-jun induction.  相似文献   

16.
陆晋  湛进逾  陈冕  黎伟  李江宏  闫爱萍 《生物磁学》2013,(35):6900-6903
目的:探讨依达拉奉对硝普钠诱导的PCI2细胞凋亡的影响。方法:体外培养PCI2细胞,并分为依达拉奉对硝普钠保护组(含500μmol/L硝普钠和75μmol/L依达拉奉)、硝普钠诱导组(含500μmol/L硝普钠)和对照组。采用MTT法检测细胞的增殖率:流式细胞术检测细胞的凋亡情况;Western-blot检i受4凋亡抑制蛋白Bcl-2和凋亡促进蛋白Bad的表达。结果:与对照组相比,硝普钠处理的PCI2细胞增殖率显著降低,而细胞凋亡率显著升高,细胞内Bcl-2的表达显著减少,而Bad的表显著增加,差异均具有统计学意义(P〈0.05);与单纯硝普钠诱导组相比,依达拉奉处理组细的胞增殖率显著增加而细胞凋亡率显著减少,同时Bcl-2的表达显著增加,而Bad的表达明显减少,差异均具有统计学意义(P〈0.05)。结论:依达拉奉对硝普钠诱导的PCI2细胞凋亡具有抑制作用,可能通过增加Bcl-2的表达并降低Bad的表达发挥抗凋亡作用。  相似文献   

17.
Abstract: The bcl-2 protooncogene product possesses antiapoptotic properties in neuronal and nonneuronal cells. Recent data suggest that Bcl-2's potency as a survival factor hinges on its ability to suppress oxidative stress, but neither the subcellular site(s) nor the mechanism of its action is known. In this report electron paramagnetic resonance (EPR) spectroscopy analyses were used to investigate the local effects of Bcl-2 on membrane lipid peroxidation. Using hydrogen peroxide (H2O2) and amyloid β-peptide (Aβ) as lipoperoxidation initiators, we determined the loss of EPR-detectable paramagnetism of nitroxyl stearate (NS) spin labels 5-NS and 12-NS. In intact cell preparations and postnuclear membrane fractions, Aβ and H2O2 induced significant loss of 5-NS and 12-NS signal amplitude in control PC12 cells, but not PC12 cells expressing Bcl-2. Cells were subjected to differential subcellular fractionation, yielding preparations of plasma membrane and mitochondria. In preparations derived from Bcl-2-expressing cells, both fractions contained Bcl-2 protein. 5-NS and 12-NS signals were significantly decreased following Aβ and H2O2 exposure in control PC12 mitochondrial membranes, and Bcl-2 largely prevented these effects. Plasma membrane preparations containing Bcl-2 were also resistant to radical-induced loss of spin label. Collectively, our data suggest that Bcl-2 is localized to mitochondrial and plasma membranes where it can act locally to suppress oxidative damage induced by Aβ and H2O2, further highlighting the important role of lipid peroxidation in apoptosis.  相似文献   

18.
19.
Neurotrophins are a family of growth factors that attenuate several forms of pathological neuronal cell death and may represent a putative therapeutic approach to neurodegenerative diseases. In Alzheimer disease, amyloid-beta (Abeta) is thought to play a central role in the neuronal death occurring in brains of patients. In the present study, we evaluate the ability of neurotrophin-3 (NT-3) to protect neurons against the toxicity induced by aggregated Abeta. We showed that in primary cultures of cortical neurons, NT-3 reduces Abeta-induced apoptosis by limiting caspase-8, caspase-9, and caspase-3 cleavage. This neuroprotective effect of NT-3 was concomitant to an increased level of Akt phosphorylation and was abolished by an inhibitor of the phosphatidylinositol-3 kinase (PI-3K), LY294002. In parallel, NT-3 treatment reduced Abeta induced caspase-3 processing to control levels. In an attempt to link PI-3K/Akt to caspase inhibition, we evaluated the influence of the PI-3K/Akt axis on the expression of a member of the inhibitors of apoptosis proteins (IAPs), the neuronal apoptosis inhibitory protein-1. We demonstrated that NT-3 induces an up-regulation of neuronal apoptosis inhibitory protein-1 expression in neurons that promotes the inhibition of Abeta-induced neuronal apoptosis. Together, these findings demonstrate that NT-3 signaling counters Abeta-dependent neuronal cell death and may represent an innovative therapeutic intervention to limit neuronal death in Alzheimer disease.  相似文献   

20.
Amyloid-beta peptide (Abeta) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Abeta induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Abeta-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Abeta and ceramide induced OLG death. In addition, Abeta activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Abeta cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Abeta-induced OLG death. Glutathione (GSH) precursors inhibited Abeta activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Abeta-induced death. These results suggest that Abeta induces OLG death by activating the nSMase-ceramide cascade via an oxidative mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号