首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
Abstract

We have studied double and triple helix formation between 2′–5′ or 3–5′ linked oligoriboadenylates and oligoribouridylates with chain length 7 or 10 by CD spectrometry. The complex formation depends on the type of linkage of oligoribonucleotides, chain length, concentration and molar ratio of the strands, temperature and the cationic concentration. Mixture of any linkage isomers of oligo(rA) and oligo(rU) in 1:1 molar ratio form duplex at 0.1 M NaCl. The duplex stability largely depends on the type of the linkages and is in the following order; [35′] oligo(rA)·[3′-5′] oligo(rU) > [2′-5′] oligo(rA)'[3′-5′] oligo(rU) > [3′-5′] oligo(rA)·[2′-5′] oligo(rU) > [2–5′] oligo(rA)*[2′-5′] oligo(rU). The higher cationic concentrations, 0.5 M MgCl2, stabilize the complex and either duplex or triplex is formed depending on the input strand ratio and the type of linkage. Thermodynamic parameters, DH and DS, for the complex formation between linkage isomers of oligo(rA) and oligo(rU) showed a linear relationship indicating an enthalpy-entropy compensation phenomena. The duplex and triplex composed of [2′-5′] oligo(rA) and [2′-5′] oligo(rU) exhibit different CD spectra compared to those of any others containing 3–5′ linkage, suggesting that the fully 2–5′ duplex and triplex may possess a unique conformation. We describe prebiological significance of the linkage isomers of RNA and selection of the 3–5′ linkage against 2′-5 linkage.  相似文献   

2.
T R Fink  D M Crothers 《Biopolymers》1972,11(1):127-136
We prepared helices with noncomplementary bases by N1-oxidation of poly A, followed by reaction with poly U. Mixing curves indicate that doubly and triply helical structures form, with only the unmodified adenines involved in base pair formation. Circular dichroism spectra were examined particularly at the absorbance maximum of the adenine N1-oxide (A*). In the single strand poly (A,A*), there is a relatively strong pair of positive and negative CD bands from the A*. These are greatly reduced in the double helix, and abolished in the triple helix. We conclude that A* stacks in a conventional manner with A in the single strand, but is rotated out of the double and triple helix. In the double helix the A* probably maintains a preferred orientation with respect to the helix, but rotates randomly in the triple helix.  相似文献   

3.
The hydrogen-deuterium exchange of AMP, uridine, poly(rA), and poly(rA) · poly(rU) was investigated by a spectral difference method using stopped-flow spectrophotometry. Proton exchange rates were measured as a function of pH, added catalysts, temperature and salt concentration. The results confirm and extend previous conclusions on the H-exchange chemistry of the bases, on the large equilibrium opening of the double helix, and on its slow opening and closing rates, but an alternative conformation for the major open state is considered. Two H-exchange rate classes are found in poly(rA) · poly(rU). The slower class represents the two exocyclic amino protons of A which exchange through a pre-equilibrium opening mechanism, therefore revealing the fraction of time the helix is open. Base-pairs are open 5% of the time at 25 °C. The faster class is assigned to the U-N-3 H proton, the rate of which is limited by helix opening. Both opening and reclosing of the duplex are slow, 2 s?1 and 40 s?1, respectively, at 25 °C. Thermodynamic parameters for the equilibrium helix opening and for the rate of opening were determined. These properties may be consistent with a simple opening involving swinging out of the U base while retaining A more or less stacked within the duplex. The results demonstrate that no faster or more populated helix-open state occurs (when structure is stable). It appears that, unlike opening—closing reactions at a helix end or a helix-coil boundary, internal base opening and closing are innately slow. One implication of this is that any chemical or biological process requiring access to sequences in the interior of a closed stable DNA duplex may be constrained to proceed only on a time scale of seconds, and not in milliseconds or microseconds.  相似文献   

4.
Under various conditions poly(A) exists in different forms such as single-stranded helix, two double-helical forms and others. The formation of double-stranded helices is induced by adenine protonation. Under physiological ionic strengths they are formed at acidic pH, but under the same conditions methylated poly(A) has double-stranded structure at alkaline pH. Since the shift of adenine protonation pKa to alkaline region may be caused not only by chemical modification of poly(A) but also its interaction with proteins, it is quite probable that double oligo(A)-helices are formed in the living cell as well. In this article the hypothesis on possible biological role of poly(A) double-stranded forms has been discussed in details. The models of involvement of double oligo(A)-sequences of RNA in such intracellular processes as termination of mRNA poly(A) tails synthesis and autoregulation of poly(A)-binding protein synthesis are suggested as an example.  相似文献   

5.
Dietmar Prschke 《Biopolymers》1971,10(10):1989-2013
The properties of oligonucleotide helices of adeuylic- and uridylic acid oligomers have been investigated by measurements of hypo-and hyperchromieity. High ionic strengths favor the formation of triple helices. Thus, the double helix-coil transition can be studied (without interference by triple helices) only at low ionic-strength. A “phase diagram” is given representing the Tm-values of the various transitions at different ionic strengths for the system A(pA)17 + U(pU)17. Oligonucleolides of chain lengths <8 always form both double and triple helices at the nucleotide concentrations required for base pairing. For this reason the double helix-coil transition without coupling of the triple helix equilibrium can only be measured for chain lengths higher than 7. Melting curves corresponding to this transition have been determined for chain lengths 8, 9, 10, 11, 14 and 18 at different concentrations. An increase in nucleotide concentration leads to an increase in melting temperature. The shorter the chain length the lower the Tm-value and the broader the helix-coil transition. The experimental transition curves have been analysed according to a staggering zipper model with consideration of the stacking of the adeuylic acid single strands and the electrostatic repulsion of tlip phosphate charges on opposite strands. The temperature dependence of the nucleation parameter has been accounted for by a slacking factor x. The stacking factor expresses the magnitude of the stacking enthalpy. By curve fitting xwas computed to be 0.7, corresponding to a stacking enthalpy of about S kcal/mole. The model described allows the reproduction of the experimental transition curves with relatively high accuracy. In an appendix the thermodynamic parameters of the stacking equilibrium of poly A and of the helix-coil equilibria of poly A + poly U at neutral pH are calculated (ΔHA = ?7.9 kcal/mole for the poly A stacking and ΔH12 = ?10.9 kcal/mole for the formation of the double helix from the randomly coiled single strands). A formula for the configurational entropy of polymers derived by Flory on the basis of a liquid lattice model is adapted to calculate the stacking entropies of adenylic oligomers.  相似文献   

6.
Fourier transform infrared (FTIR), UV absorption and exchangeable proton NMR spectroscopies have been used to study the formation and stability of two intramolecular pH-dependent triple helices composed by a chimeric 29mer DNA-RNA (DNA double strand and RNA third strand) or by the analogous 29mer RNA. In both cases decrease of pH induces formation of a triple helical structure containing either rU*dA.dT and rC+*dG.dC or rU*rA.rU and rC+*rG.rC triplets. FTIR spectroscopy shows that exclusively N-type sugars are present in the triple helix formed by the 29mer RNA while both N- and S-type sugars are detected in the case of the chimeric 29mer DNA-RNA triple helix. Triple helix formation with the third strand RNA and the duplex as DNA appears to be associated with the conversion of the duplex part from a B-form secondary structure to one which contains partly A-form sugars. Thermal denaturation experiments followed by UV spectroscopy show that a major stabilization occurs upon formation of the triple helices. Monophasic melting curves indicate a simultaneous disruption of the Hoogsteen and Watson-Crick hydrogen bonds in the intramolecular triplexes when the temperature is increased. This is in agreement with imino proton NMR spectra recorded as a function of temperature. Comparison with experiments concerning intermolecular triplexes of identical base and sugar composition shows the important role played by the two tetrameric loops in the stabilization of the intramolecular triple helices studied.  相似文献   

7.
E J Gabbay 《Biopolymers》1967,5(8):727-747
Information concerning the structures of rA–rU, rA–rU2 rI–rC, rA–rI2, and acid rA helices in solutions is reported. Through the use of diquaternary ammonium salts of the general structure, \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm R}_1 {\rm R}_2 {\rm R}_3 \mathop {\rm N}\limits^ + ({\rm CH}_2 )n\mathop {\rm N}\limits^ + {\rm R}_1 {\rm R}_2 {\rm R}_3 \cdot 2{\rm Br}^ - $\end{document} (I), it is shown that (1) the distances between adjacent negatively charged oxygen atoms on the helix increases in the following order rA–rI2 < rI–rC < rA–rU ? rA–rU2; (2) the density of the helices increases in the order. rA–rI2 < rA–rU < rA–rU2 < rI–rC; (3) there is a large hydrophobia site in rA–rI2 and possibly also in rA–rU, rA–rU2, and rI–rC helices; (4) the results of the interactions between the salts of type I and the helices may be formulated in semi-quantitative terms by the use of two parameters, α, and β which are shown to be related to the charge separation and the density of the helices, respectively; (5) the studies in solutions compare favorably with the x-ray studies on the fibers; and (6) the acid rA helix differs significantly from the other helices by the fact that the electrostatic interstrand interactions between the negatively charged oxygen atom of a phosphate group and the positively charged 10-amino group of adenine contribute significantly to the stabilization of the helix, and thus it is found that the presence of the salts, I, leads to a significant destabilization of the acid rA helix.  相似文献   

8.
J M Eyster  E W Prohofsky 《Biopolymers》1974,13(12):2527-2543
The eigenvalues and eigenvectors of 11-fold double-helical poly(rU)·poly(rA) have been calculated. The vibrational potential energy of the double-helical structure is initially considered to be a sum of the vibrational potential energy of the single-helical structures poly(rU) and poly(rA). Coupling between the single helices is introduced by including a stretch force constant for each hydrogen bond between the uracil and adenine base residues. In addition, a model is presented for nonbonded interactions between nearest neighbor base pairs, which is consistent with a previous model for such interactions in the single helices. Because of the simple structural relationship between the uncoupled single helices and the double helix we are able to cast the secular equation for poly(rU)·poly(rA) in a form suitable for the use of perturbation theory using the previously calculated normal modes for the single helices as the unperturbed modes. Perturbation theory was found to be inapplicable for the region of the spectrum ?450 cm?1. In this region an exact Green function technique is used to calculate the strongly coupled modes. We explicitly display one aspect of these double-helical normal modes. The stretching motions of the hydrogen bonds in the region of the spectrum <450 cm?1 have been plotted as bar graphs for each mode.  相似文献   

9.
Here we report the purification and biochemical characterization of recombinant Arabidopsis thaliana DNA ligase I. We show that this ligase requires ATP as a source for adenylation. The calculated K m [ATP] for ligation is 3 M. This enzyme is able to ligate nicks in oligo(dT)/poly(dA) and oligo(rA)/poly(dT) substrates, but not in oligo(dT)/poly(rA) substrates. Double-stranded DNAs with cohesive or blunt ends are also good substrates for the ligase. These biochemical features of the purified enzyme show the characteristics typical of a type I DNA ligase. Furthermore, this DNA ligase is able to perform the reverse reaction (relaxation of supercoiled DNA) in an AMP-dependent and PPi-stimulated manner.  相似文献   

10.
Abstract

A detailed molecular mechanical study has been made on the complexes of netropsin with the double stranded oligonucleotide (dA)12.(dT)12 and with the triple helix (dA)12.(dT)12.(dT)12. The complexes were built using computer graphics and energy refined using JUMNA program. In agreement with circular dichroïsm experiments we have shown that 3 netropsins can bind the minor grooves of the triple helix and of the double helix. The groove geometry in the duplex and in the triplex is very similar. However a detailed analysis of the energetic terms shows, in agreement with thermal denaturation studies, that the affinity of netropsin toward the double helices is larger than towards triple helices.  相似文献   

11.
UDP-glucose dehydrogenase: substrate binding stoichiometry and affinity   总被引:3,自引:0,他引:3  
Precise structural parameters of polyribonucleotides single stranded helices are determined as well as those of double stranded helices of poly 2′-O-methyl A and of poly A at neutral and acid pH. Infrared linear dichroism investigations indicate the similarity of the conformation of the sugar-phosphate backbone of these single and double stranded helices. The angles of the phosphate group for single stranded helix at neutral pH is found to be oriented at 48° for the 02P02 bisector and at about 65° for the 02–03 line to the helix axis. Similar values were found for double stranded poly A helix at acid pH. These structural parameters obtained for the first time on single stranded polynucleotide helices are proposed to be valid for other similar helical chains such as poly A segments of nuclear or messenger RNA and single stranded CCA acceptor end of transfer RNA.  相似文献   

12.
The cocaine aptamer is a DNA molecule that binds cocaine at the junction of three helices. The bifunctional spectroscopic probe Ç was incorporated independently into three different positions of the aptamer and changes in structure and dynamics upon addition of the cocaine ligand were studied. Nucleoside Ç contains a rigid nitroxide spin label and can be studied directly by electron paramagnetic resonance (EPR) spectroscopy and fluorescence spectroscopy after reduction of the nitroxide to yield the fluoroside Çf. Both the EPR and the fluorescence data for aptamer 2 indicate that helix III is formed before cocaine binding. Upon addition of cocaine, increased fluorescence of a fully base-paired Çf, placed at the three-way junction in helix III, was observed and is consistent with a helical tilt from a coaxial stack of helices II and III. EPR and fluorescence data clearly show that helix I is formed upon addition of cocaine, concomitant with the formation of the Y-shaped three-way helical junction. The EPR data indicate that nucleotides in helix I are more mobile than nucleotides in regular duplex regions and may reflect increased dynamics due to the short length of helix I.  相似文献   

13.
We present and analyze the structure of the oligonucleotide d(ATATAT) found in two different forms by X-ray crystallography and in solution by NMR. We find that in both crystal lattices the oligonucleotide forms an antiparallel double helical duplex in which base pairing is of the Hoogsteen type. The double helix is apparently very similar to the standard B-form of DNA, with about 10 base pairs per turn. However, the adenines in the duplex are flipped over; as a result, the physicochemical features of both grooves of the helix are changed. In particular, the minor groove is narrow and hydrophobic. On the other hand, d(ATATAT) displays a propensity to adopt the B conformation in solution. These results confirm the polymorphism of AT-rich sequences in DNA. Furthermore, we show that extrahelical adenines and thymines can be minor groove binders in Hoogsteen DNA.  相似文献   

14.
M-DNA is a complex between the divalent metal ions Zn2+, Ni2+ and Co2+ and duplex DNA which forms at a pH of ~8.5. The stability and formation of M-DNA was monitored with an ethidium fluorescence assay in order to assess the relationship between pH, metal ion concentration, DNA concentration and the base composition. The dismutation of calf thymus DNA exhibits hysteresis with the formation of M-DNA occurring at a higher pH than the reconversion of M-DNA back to B-DNA. Hysteresis is most prominent with the Ni form of M-DNA where complete reconversion to B-DNA takes several hours even in the presence of EDTA. Increasing the DNA concentration leads to an increase in the metal ion concentration required for M-DNA formation. Both poly(dG)•poly(dC) and poly(dA)•poly(dT) formed M-DNA more readily than the corresponding mixed sequence DNAs. For poly(dG)•(poly(dC) M-DNA formation was observed at pH 7.4 with 0.5 mM ZnCl2. Modified bases were incorporated into a 500 bp fragment of phage λ DNA by polymerase chain reaction. DNAs in which guanine was replaced with hypoxanthine or thymine with 5-fluorouracil formed M-DNA at pHs below 8 whereas substitutions such as 2-aminoadenine and 5-methylcytosine had little effect. Poly[d(A5FU)] also formed a very stable M-DNA duplex as judged from Tm measurements. It is evident that the lower the pKa of the imino proton of the base, the lower the pH at which M-DNA will form; a finding that is consistent with the replacement of the imino proton with the metal ion.  相似文献   

15.
Electro-optical studies of conformation and interaction of polynucleotides   总被引:1,自引:0,他引:1  
Measurements by the technique of electric birefringence with pulsed sinusoidal electric fields on polyriboadenylic acid (poly-A) and polyribouridylic acid (poly-U) indicate that the kinetics of the double-stranded helix formation of poly (A + U) in the presence of Mg2+ is second order and consists of two steps: nucleation and propagation of base pairs from nuclei. The nucleation involves approximately 7 base pairs. It seems that the requirement of 7 base pairs to start the formation of a double-stranded helix is not peculiar to poly (A + U) but is associated with double-stranded helices of polynucleotides in general. This implies that it may be associated with spatial requirements of the phosphate-sugar backbone, rather than with the particular bases linked to the backbone. The decline in rate of poly (A + U) formation observed above a critical temperature is the consequence of changes in the poly-A conformation setting in at this critical temperature, rather than resulting from an increase in the reversibility of the base-pair propagation step of double-stranded helix formation. The dominant role of the conformation of poly-A in the double-stranded helix formation of poly (A + U) is further borne out by the pH dependence of the rate which completely parallels the conformation changes known to occur in poly-A as a function of pH. This indirectly suggests that at neutral pH poly-A is a single-stranded helix. The rotary diffusion coefficients attest to the flexibility of this helix, while the stacked nature of the base pairs at low temperatures is revealed by the identical increments in the specific Kerr constant on going from poly-A to poly (A + U) and from poly (A + U) to poly (A + 2U) helices. Results suggest that Mg2+ binds to the phosphate part of the backbone. Poly-U binds Mg2+ more strongly than poly-A; this difference in binding strength is attributed to differences in conformation (random coil versus helix). It is also borne out by the present results that the degree of order in the structure of poly-U, even at low temperatures and neutral pH, is at best an order of magnitude smaller than that of poly-A under similar conditions. Furthermore, the earlier proposed double-stranded structure of poly-U is called into question. A hairpinlike structure seems to agree with results of this investigation. Finally, the results support the contention that the ion atmosphere polarization is responsible for orientation of polyelectrolytes in the presence of alternating electric fields in the neighborhood of 25 kc./sec. frequency.  相似文献   

16.
Jain SS  Polak M  Hud NV 《Nucleic acids research》2003,31(15):4608-4615
Small molecules that intercalate in DNA and RNA are powerful agents for controlling nucleic acid structural transitions. We recently demonstrated that coralyne, a small crescent-shaped molecule, can cause the complete and irreversible disproportionation of duplex poly(dA)·poly(dT) into triplex poly(dA)·poly(dT)·poly(dT) and a poly(dA) self- structure. Both DNA secondary structures that result from duplex disproportionation are stabilized by coralyne intercalation. In the present study, we show that the kinetics and thermodynamics of coralyne-driven duplex disproportionation strongly depend on oligonucleotide length. For example, disproportionation of duplex (dA)16·(dT)16 by coralyne reverts over the course of hours if the sample is maintained at 4°C. Coralyne-disproportioned (dA)32· (dT)32, on the other hand, only partially reverts to the duplex state over the course of days at the same temperature. Furthermore, the equilibrium state of a (dA)16·(dT)16 sample in the presence of coralyne at room temperature contains three different secondary structures [i.e. duplex, triplex and the (dA)16 self-structure]. Even the well-studied process of triplex stabilization by coralyne binding is found to be a length-dependent phenomenon and more complicated than previously appreciated. Together these observations indicate that at least one secondary structure in our nucleic acid system [i.e. duplex, triplex or (dA)n self-structure] binds coralyne in a length-dependent manner.  相似文献   

17.
Duplex DNA containing oligo(dG.dC)-rich clusters can be isolated by specific binding to poly(rC)-Sephadex. This binding, probably mediated by the formation of an oligo(dG.dC)rC+ triple helix, is optimal at pH 5 in 50% formamide, 2 M LiCl; the bound DNA is recovered by elution at pH 7.5. Using this method we find that the viral DNAs PM2, lambda and SV40 contain at least 1, 1 and 2 sites for binding to poly(rC)-Sephadex, respectively. These binding sites have been mapped in the case of SV40; the binding sites can in turn be used for physical mapping studies of DNAs containing (dG.dC) clusters. Inspection of the sequence of the bound fragments of SV40 DNA shows that a (dG.dC)6-7 tract is required for the binding of duplex DNA to poly(rC)-Sephadex. Although about 60% of rabbit DNA cleaved with restriction endonuclease KpnI binds to poly(rC)-Sephadex, no binding is observed for the 5.1 kb DNA fragment generated by KpnI digestion, which contains the rabbit beta-globin gene. This indicates that oligo(dG.dC) clusters are not found close to the rabbit beta-globin gene.  相似文献   

18.
It is fundamental to explore in atomic detail the behavior of DNA triple helices as a means to understand the role they might play in vivo and to better engineer their use in genetic technologies, such as antigene therapy. To this aim we have performed atomistic simulations of a purine-rich antiparallel triple helix stretch of 10 base triplets flanked by canonical Watson–Crick double helices. At the same time we have explored the thermodynamic behavior of a flipping Watson–Crick base pair in the context of the triple and double helix. The third strand can be accommodated in a B-like duplex conformation. Upon binding, the double helix changes shape, and becomes more rigid. The triple-helical region increases its major groove width mainly by oversliding in the negative direction. The resulting conformations are somewhere between the A and B conformations with base pairs remaining almost perpendicular to the helical axis. The neighboring duplex regions maintain a B DNA conformation. Base pair opening in the duplex regions is more probable than in the triplex and binding of the Hoogsteen strand does not influence base pair breathing in the neighboring duplex region.  相似文献   

19.
D J Patel 《Biopolymers》1976,15(3):533-558
The Watson–Crick imino and amino exchangeable protons, the nonexchangeable base and sugar protons, and the backbone phosphates for d-CpG(pCpG)n, n = 1 and 2, have been monitored by high-resolution nmr spectroscopy in aqueous solution over the temperature range 0°–90°C. The temperature dependence of the chemical shifts of the tetramer and hexamer resonances is consistent with the formation of stable duplexes at low temperature in solution. Comparison of the spectral characteristics of the tetranucleotide with those of the hexanucleotide with temperature permits the differentiation and assignment of the cytosine proton resonances on base pairs located at the end of the helix from those in an interior position. There is fraying at the terminal base pairs in the tetranucleotide and hexanucleotide duplexes. The Watson–Crick ring imino protons exchange at a faster rate than the Watson–Crick side-chain amino protons, with exchange occurring by transient opening of the double helix. The structure of the d-CpG(pCpG)n double helices has been probed by proton relaxation time measurements, sugar proton coupling constants, and the proton chemical shift changes associated with the helix–coil transition. The experimental data support a structural model in solution, which incorporates an anti conformation about the glycosyl bonds, C(3) exo sugar ring pucker, and base overlap geometries similar to the B-DNA helix. Rotational correlation times of 1.7 and 0.9 × 10?9 sec have been computed for the hexanucleotide and tetranucleotide duplexes in 0.1 M salt, D2O, pH 6.25 at 27°C. The well-resolved 31P resonances for the internucleotide phosphates of the tetramer and hexamer sequences at superconducting fields shift upfield by 0.2–0.5 ppm on helix formation. These shifts reflect a conformational change about the ω,ω′ phosphodiester bonds from gauche-gauche in the duplex structure to a distribution of gauche-trans states in the coil structure. Significant differences are observed in the transition width and midpoint of the chemical shift versus temperature profiles plotted in differentiated form for the various base and sugar proton and internucleotide phosphorous resonances monitoring the d-CpG(pCpG)n helix–coil transition. The twofold symmetry of the d-CpGpCpG duplex is removed on complex formation with the antibiotic actinomycin-D. Two phosphorous resonances are shifted downfield by ~2.6 ppm and ~1.6 ppm on formation of the 1:2 Act-D:d-CpGpCpG complex in solution. Model studies on binding of the antibiotic to dinucleotides of varying sequence indicate that intercalation of the actinomycin-D occurs at the GpC site in the d-CpGpCpG duplex and that the magnitude of the downfield shifts reflects strain at the O-P-O backbone angles and hydrogen bonding between the phenoxazone and the phosphate oxygens. Actinomycin-D is known to bind to nucleic acids that exhibit a B-DNA conformation; this suggests that the d-CpG(pCpG)n duplexes exhibit a B-DNA conformation in solution.  相似文献   

20.
Magnesium ions strongly influence the structure and biochemical activity of RNA. The interaction of Mg2+ with an equimolar mixture of poly(rA) and poly(rU) has been investigated by UV spectroscopy, isothermal titration calorimetry, ultrasound velocimetry and densimetry. Measurements in dilute aqueous solutions at 20°C revealed two differ ent processes: (i) Mg2+ binding to unfolded poly(rA)·poly(rU) up to [Mg2+]/[phosphate] = 0.25; and (ii) poly(rA)·2poly(rU) triplex formation at [Mg2+]/[phosphate] between 0.25 and 0.5. The enthalpies of these two different processes are favorable and similar to each other, ~–1.6 kcal mol–1 of base pairs. Volume and compressibility effects of the first process are positive, 8 cm3 mol–1 and 24 × 10–4 cm3 mol–1 bar–1, respectively, and correspond to the release of water molecules from the hydration shells of Mg2+ and the polynucleotides. The triplex formation is also accompanied by a positive change in compressibility, 14 × 10–4 cm3 mol–1 bar–1, but only a small change in volume, 1 cm3 mol–1. A phase diagram has been constructed from the melting experiments of poly(rA)·poly(rU) at a constant K+ concentration, 140 mM, and various amounts of Mg2+. Three discrete regions were observed, corresponding to single-, double- and triple-stranded complexes. The phase boundary corresponding to the transition between double and triple helical conformations lies near physiological salt concentrations and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号