首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions.  相似文献   

2.
The mechanical properties of the extracellular matrix play an important role in maintaining cellular function and overall tissue homeostasis. Recently, a number of hydrogel systems have been developed to investigate the role of matrix mechanics in mediating cell behavior within three-dimensional environments. However, many of the techniques used to modify the stiffness of the matrix also alter properties that are important to cellular function including matrix density, porosity and binding site frequency, or rely on amorphous synthetic materials. In a recent publication, we described the fabrication, characterization and utilization of collagen gels that have been non-enzymatically glycated in their unpolymerized form to produce matrices of varying stiffness. Using these scaffolds, we showed that the mechanical properties of the resulting collagen gels could be increased 3-fold without significantly altering the collagen fiber architecture. Using these matrices, we found that endothelial cell spreading and outgrowth from multi-cellular spheroids changes as a function of the stiffness of the matrix. Our results demonstrate that non-enzymatic collagen glycation is a tractable technique that can be used to study the role of 3D stiffness in mediating cellular function. This commentary will review some of the current methods that are being used to modulate matrix mechanics and discuss how our recent work using non-enzymatic collagen glycation can contribute to this field.  相似文献   

3.
Intervertebral disc (IVD) degeneration is associated with several pathophysiologic changes of the IVD, including dehydration of the nucleus pulposus (NP). Tissue engineering strategies may be used to restore both biological and mechanical function of the IVD following removal of NP tissue during surgical intervention. Recently, photocrosslinked carboxymethylcellulose (CMC) hydrogels were shown to support chondrogenic, NP-like extracellular matrix (ECM) elaboration by human mesenchymal stromal cells (hMSCs) when supplemented with TGF-β3; however, mechanical properties of these constructs did not reach native values. Fabrication parameters (i.e., composition, crosslinking density) can influence the bulk mechanical properties of hydrogel scaffolds, as well as cellular behavior and differentiation patterns. The objective of this study was to evaluate the influence of CMC macromer concentration (1.5, 2.5 and 3.5 % weight/volume) on bulk hydrogel properties and NP-like matrix elaboration by hMSCs. The lowest macromer concentration of 1.5 % exhibited the highest gene expression levels of aggrecan and collagen II at day 7, corresponding with the largest accumulation of glycosaminoglycans and collagen II by day 42. The ECM elaboration in the 1.5 % constructs was more homogeneously distributed compared to primarily pericellular localization in 3.5 % gels. The 1.5 % gels also displayed significant improvements in mechanical functionality by day 42 compared to earlier time points, which was not seen in the other groups. The effects of macromer concentration on matrix accumulation and organization are likely attributed to quantifiable differences in polymer crosslinking density and diffusive properties between the various hydrogel formulations. Taken together, these results demonstrate that macromer concentration of CMC hydrogels can direct hMSC matrix elaboration, such that a lower polymer concentration allows for greater NP-like ECM assembly and improvement of mechanical properties over time.  相似文献   

4.
The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three-dimensional (3D) hydrogel systems have been used to explore the effects of the mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, self-assembling peptide (SAP) gels that are able to recapitulate normal epithelial acini morphogenesis and gene expression in a 3D context. By exploiting the range of viscoelasticity attainable with these SAP gels, and their ability to recreate native-like ECM fibril topology with minimal variability in ligand density and pore size, we were able to reconstitute normal and tumor-like phenotypes and gene expression patterns in nonmalignant mammary epithelial cells. Accordingly, this SAP hydrogel system presents the first tunable system capable of independently assessing the interplay between ECM stiffness and multi-cellular epithelial phenotype in a 3D context.  相似文献   

5.
Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local mechanical properties are directly determined by laser tweezers based active microrheology (AMR). Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present the device in the context of fibrin hydrogels. First AMR is used to directly measure local micromechanics in unstrained hydrogels of increasing fibrin concentration. Changes in stiffness are then mapped within our device, where fibrin concentration is held constant. Fluorescence confocal imaging and orbital particle tracking are used to quantify structural changes in fibrin on the micro and nano levels respectively. The micromechanical strain stiffening measured by microrheology is not accompanied by ECM microstructural changes under our applied loads, as measured by confocal microscopy. However, super-resolution orbital tracking reveals nanostructural straightening, lengthening, and reduced movement of fibrin fibers. Furthermore, we show that aortic smooth muscle cells cultured within our device are morphologically sensitive to the induced mechanical gradient. Our results demonstrate a powerful cell culture tool that can be used in the study of mechanical effects on cellular physiology in naturally derived 3D ECM tissues.  相似文献   

6.
Interactions between cells and the extracellular matrix (ECM) play essential roles in modulating cell behavior during development and disease. The myocardial ECM is composed predominantly of interstitial collagen type I and type III. The composition, organization, and accumulation of these collagens are altered concurrent with cardiovascular development and disease. Changes in these parameters are thought to play significant roles in myocardial function. While a number of studies have examined how changes in the ECM affect myocardial function as a whole, much less is known regarding the response at the cellular level to changes in the collagenous ECM. Experiments were carried out to determine the effects of alterations in collagen density and ECM stiffness on the behavior of isolated heart fibroblasts. In vitro bioassays were performed to measure the effects of changes in collagen concentration (0.75-1.25 mg/ml) on adhesion, migration, spreading, and gene expression by heart fibroblasts. Increased density of collagen in 3-dimensional gels resulted in more efficient adhesion, spreading, and migration by heart fibroblasts. These experiments indicated that the density of the collagen matrix has a significant impact on fibroblast function. These studies begin to elucidate the effects of ECM density at the cellular level in the myocardium.  相似文献   

7.
The structural proteins of the extracellular matrix (ECM) form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn) and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional network models.  相似文献   

8.
Fibrin is a biopolymer that gives thrombi the mechanical strength to withstand the forces imparted on them by blood flow. Importantly, fibrin is highly extensible, but strain hardens at low deformation rates. The density of fibrin in clots, especially arterial clots, is higher than that in gels made at plasma concentrations of fibrinogen (3–10 mg/mL), where most rheology studies have been conducted. Our objective in this study was to measure and characterize the elastic regimes of low (3–10 mg/mL) and high (30–100 mg/mL) density fibrin gels using shear and extensional rheology. Confocal microscopy of the gels shows that fiber density increases with fibrinogen concentration. At low strains, fibrin gels act as thermal networks independent of fibrinogen concentration. Within the low-strain regime, one can predict the mesh size of fibrin gels by the elastic modulus using semiflexible polymer theory. Significantly, this provides a link between gel mechanics and interstitial fluid flow. At moderate strains, we find that low-density fibrin gels act as nonaffine mechanical networks and transition to affine mechanical networks with increasing strains within the moderate regime, whereas high-density fibrin gels only act as affine mechanical networks. At high strains, the backbone of individual fibrin fibers stretches for all fibrin gels. Platelets can retract low-density gels by >80% of their initial volumes, but retraction is attenuated in high-density fibrin gels and with decreasing platelet density. Taken together, these results show that the nature of fibrin deformation is a strong function of fibrin fiber density, which has ramifications for the growth, embolization, and lysis of thrombi.  相似文献   

9.
Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell–matrix mechanical interactions in 3-D culture models, tissue explants and living animals.  相似文献   

10.
The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular “mechanotransduction” mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.  相似文献   

11.
In an effort to regulate the behavior of mammalian cell entrapped in a gel, the gels were functionalized with the putative cell-binding (-Arg-Gly-Asp-) (RGD) domain. The adhesion molecules composed of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides and the cell recognition ligands were inculcated into the thermo-reversible hydrogel composed of N-isopropylacrylamide, with a small amount of succinyl poly(ethylene glycol) (PEG) acrylate (MW 2000) used as the biomimetic extracellular matrix (ECM). The GRGDS-containing p(NiPAAm-co-PEG) copolymer gel was examined in vitro for its ability to promote cell spreading and to increase the viability of the cells by introducing PEG spacers. ECM poorly adhered to hydrogel lacking adhesion molecules permitting only a 20% spread of the seeded cells after 10 days. When the PEG spacer arms, which were immobilized by a peptide linkage, had been integrated into the hydrogel, the conjugation of RGD improved cell spreading by 600% in a 10-day trial.  相似文献   

12.
Mechanical cues present in the ECM have been hypothesized to provide instructive signals that dictate cell behavior. We probed this hypothesis in osteoblastic cells by culturing MC3T3-E1 cells on the surface of type I collagen-modified hydrogels with tunable mechanical properties and assessed their proliferation, migration, and differentiation. On gels functionalized with a low type I collagen density, MC3T3-E1 cells cultured on polystyrene proliferated twice as fast as those cultured on the softest substrate. Quantitative time-lapse video microscopic analysis revealed random motility speeds were significantly retarded on the softest substrate (0.25 ± 0.01 µm/min), in contrast to maximum speeds on polystyrene substrates (0.42 ± 0.04 µm/min). On gels functionalized with a high type I collagen density, migration speed exhibited a biphasic dependence on ECM compliance, with maximum speeds (0.34 ± 0.02 µm/min) observed on gels of intermediate stiffness, whereas minimum speeds (0.24 ± 0.03 µm/min) occurred on both the softest and most rigid (i.e., polystyrene) substrates. Immature focal contacts and a poorly organized actin cytoskeleton were observed in cells cultured on the softest substrates, whereas those on more rigid substrates assembled mature focal adhesions and robust actin stress fibers. In parallel, focal adhesion kinase (FAK) activity (assessed by detecting pY397-FAK) was influenced by compliance, with maximal activity occurring in cells cultured on polystyrene. Finally, mineral deposition by the MC3T3-E1 cells was also affected by ECM compliance, leading to the conclusion that altering ECM mechanical properties may influence a variety of MC3T3-E1 cell functions, and perhaps ultimately, their differentiated phenotype. bone; focal adhesion kinase; mechanotransduction; cytoskeleton; integrins  相似文献   

13.
《Biophysical journal》2022,121(4):525-539
The mechanical behavior of tissues at the macroscale is tightly coupled to cellular activity at the microscale. Dermal wound healing is a prominent example of a complex system in which multiscale mechanics regulate restoration of tissue form and function. In cutaneous wound healing, a fibrin matrix is populated by fibroblasts migrating in from a surrounding tissue made mostly out of collagen. Fibroblasts both respond to mechanical cues, such as fiber alignment and stiffness, as well as exert active stresses needed for wound closure.Here, we develop a multiscale model with a two-way coupling between a microscale cell adhesion model and a macroscale tissue mechanics model. Starting from the well-known model of adhesion kinetics proposed by Bell, we extend the formulation to account for nonlinear mechanics of fibrin and collagen and show how this nonlinear response naturally captures stretch-driven mechanosensing. We then embed the new nonlinear adhesion model into a custom finite element implementation of tissue mechanical equilibrium. Strains and stresses at the tissue level are coupled with the solution of the microscale adhesion model at each integration point of the finite element mesh. In addition, solution of the adhesion model is coupled with the active contractile stress of the cell population. The multiscale model successfully captures the mechanical response of biopolymer fibers and gels, contractile stresses generated by fibroblasts, and stress-strain contours observed during wound healing. We anticipate that this framework will not only increase our understanding of how mechanical cues guide cellular behavior in cutaneous wound healing, but will also be helpful in the study of mechanobiology, growth, and remodeling in other tissues.  相似文献   

14.
Although biochemical signals that modulate stem cell self-renewal and differentiation were extensively studied, only recently were the mechanical properties of a stem cell's microenvironment shown to regulate its behavior. It would be desirable to have independent control over biochemical and mechanical cues, to analyze their relative and combined effects on stem-cell function. We developed a synthetic, interfacial hydrogel culture system, termed variable moduli interpenetrating polymer networks (vmIPNs), to assess the effects of soluble signals, adhesion ligand presentation, and material moduli from 10-10,000 Pa on adult neural stem-cell (aNSC) behavior. The aNSCs proliferated when cultured in serum-free growth media on peptide-modified vmIPNs with moduli of ≥100 Pa. In serum-free neuronal differentiation media, a peak level of the neuronal marker, β-tubulin III, was observed on vmIPNs of 500 Pa, near the physiological stiffness of brain tissue. Furthermore, under mixed differentiation conditions with serum, softer gels (∼100-500 Pa) greatly favored neurons, whereas harder gels (∼1,000-10,000 Pa) promoted glial cultures. In contrast, cell spreading, self-renewal, and differentiation were inhibited on substrata with moduli of ∼10 Pa. This work demonstrates that the mechanical and biochemical properties of an aNSC microenvironment can be tuned to regulate the self-renewal and differentiation of aNSCs.  相似文献   

15.
Most recent breakthroughs in understanding cell adhesion, cell migration, and cellular mechanosensitivity have been made possible by the development of engineered cell substrates of well-defined surface properties. Traditionally, these substrates mimic the extracellular matrix (ECM) environment by the use of ligand-functionalized polymeric gels of adjustable stiffness. However, such ECM mimetics are limited in their ability to replicate the rich dynamics found at cell-cell contacts. This review focuses on the application of cell surface mimetics, which are better suited for the analysis of cell adhesion, cell migration, and cellular mechanosensitivity across cell-cell interfaces. Functionalized supported lipid bilayer systems were first introduced as biomembrane-mimicking substrates to study processes of adhesion maturation during adhesion of functionalized vesicles (cell-free assay) and plated cells. However, while able to capture adhesion processes, the fluid lipid bilayer of such a relatively simple planar model membrane prevents adhering cells from transducing contractile forces to the underlying solid, making studies of cell migration and cellular mechanosensitivity largely impractical. Therefore, the main focus of this review is on polymer-tethered lipid bilayer architectures as biomembrane-mimicking cell substrate. Unlike supported lipid bilayers, these polymer-lipid composite materials enable the free assembly of linkers into linker clusters at cellular contacts without hindering cell spreading and migration and allow the controlled regulation of mechanical properties, enabling studies of cellular mechanosensitivity. The various polymer-tethered lipid bilayer architectures and their complementary properties as cell substrates are discussed.  相似文献   

16.
Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus.  相似文献   

17.
The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer ECM protein-based materials with precise control over the protein composition, fiber geometry and scaffold architecture in order to recapitulate the structure and composition of the ECM in vivo.  相似文献   

18.
Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.  相似文献   

19.
Sea urchin embryos have been one of model organisms to investigate cellular behaviors because of their simple cell composition and transparent body. They also give us an opportunity to investigate molecular functions of human proteins of interest that are conserved in sea urchin. Here we report that human disease-associated extracellular matrix orthologues ECM3 and QBRICK are necessary for mesenchymal cell migration during sea urchin embryogenesis. Immunofluorescence has visualized the colocalization of QBRICK and ECM3 on both apical and basal surface of ectoderm. On the basal surface, QBRICK and ECM3 constitute together a mesh-like fibrillar structure along the blastocoel wall. When the expression of ECM3 was knocked down by antisense-morpholino oligonucleotides, the ECM3-QBRICK fibrillar structure completely disappeared. When QBRICK was knocked down, the ECM3 was still present, but the basally localized fibers became fragmented. The ingression and migration of primary mesenchymal cells were not critically affected, but their migration at later stages was severely affected in both knock-down embryos. As a consequence of impaired primary mesenchymal cell migration, improper spicule formation was observed. These results indicate that ECM3 and QBRICK are components of extracellular matrix, which play important role in primary mesenchymal cell migration, and that sea urchin is a useful experimental animal model to investigate human disease-associated extracellular matrix proteins.  相似文献   

20.
The structure, physiology, and fate of living cells are all highly sensitive to mechanical forces in the cellular microenvironment, including stresses and strains that originate from encounters with the extracellular matrix (ECM), blood and other flowing materials, and neighbouring cells. This relationship between context and physiology bears tremendous implications for the design of cellular micro-or nanotechnologies, since any attempt to control cell behavior in a device must provide the appropriate physical microenvironment for the desired cell behavior. Cells sense, process, and respond to biophysical cues in their environment through a set of integrated, multi-scale structural complexes that span length scales from single molecules to tens of microns, including small clusters of force-sensing molecules at the cell surface, micron-sized cell-ECM focal adhesion complexes, and the cytoskeleton that permeates and defines the entire cell. This review focuses on several key technologies that have recently been developed or adapted for the study of the dynamics of structural micro-and nanosystems in living cells and how these systems contribute to spatially-and temporally-controlled changes in cellular structure and mechanics. We begin by discussing subcellular laser ablation, which permits the precise incision of nanoscale structural elements in living cells in order to discern their mechanical properties and contributions to cell structure. We then discuss fluorescence recovery after photobleaching and fluorescent speckle microscopy, two live-cell fluorescence imaging methods that enable quantitative measurement of the binding and transport properties of specific proteins in the cell. Finally, we discuss methods to manipulate cellular structural networks by engineering the extracellular environment, including microfabrication of ECM distributions of defined geometry and microdevices designed to measure cellular traction forces at micron-scale resolution. Together, these methods form a powerful arsenal that is already adding significantly to our understanding of the nanoscale architecture and mechanics of living cells and may contribute to the rational design of new cellular micro-and nanotechnologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号